-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMIWAE.py
395 lines (291 loc) · 14.9 KB
/
MIWAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import tensorflow as tf
import tensorflow_probability as tfp
tfb = tfp.bijectors
import keras
import numpy as np
import datetime
class MIWAE:
def __init__(self, X, Xval, n_latent=50, n_hidden=100, n_samples=1,
activation=tf.nn.tanh,
out_dist='gauss',
out_activation=None,
learnable_imputation=False,
permutation_invariance=False,
embedding_size=20,
code_size=20,
testing=False,
name='/tmp/MIWAE'):
# ---- data
self.Xorg = X.copy()
self.Xval_org = Xval.copy()
self.n, self.d = X.shape
# ---- missing
self.S = np.array(~np.isnan(X), dtype=np.float)
self.Sval = np.array(~np.isnan(Xval), dtype=np.float)
if np.sum(self.S) < self.d * self.n:
self.X = self.Xorg.copy()
self.X[np.isnan(self.X)] = 0
self.Xval = self.Xval_org.copy()
self.Xval[np.isnan(self.Xval)] = 0
else:
self.X = self.Xorg
self.Xval = self.Xval_org
# ---- settings
self.n_latent = n_latent
self.n_hidden = n_hidden
self.n_samples = n_samples
self.activation = activation
self.out_dist = out_dist
self.out_activation = out_activation
self.embedding_size = embedding_size
self.code_size = code_size
self.testing = testing
self.batch_pointer = 0
self.eps = np.finfo(float).eps
print("Creating graph...")
tf.reset_default_graph()
# ---- input
with tf.variable_scope('input'):
self.x_pl = tf.placeholder(tf.float32, [None, self.d], 'x_pl')
self.s_pl = tf.placeholder(tf.float32, [None, self.d], 's_pl')
self.n_pl = tf.placeholder(tf.int32, shape=(), name='n_pl')
if learnable_imputation and not testing:
self.imp = tf.get_variable('imp', shape=[1, self.d])
self.in_pl = self.x_pl + (1 - self.s_pl) * self.imp
elif permutation_invariance and not testing:
self.in_pl = self.permutation_invariant_embedding()
else:
self.in_pl = self.x_pl
# ---- parameters from encoder
with tf.variable_scope('encoder'):
self.q_mu, self.q_log_sig2 = self.encoder(self.in_pl)
# ---- create distribution you can sample from
q_z = tfp.distributions.Normal(loc=self.q_mu, scale=tf.sqrt(tf.exp(self.q_log_sig2)))
# ---- sample the latent value
self.l_z = q_z.sample(self.n_pl) # shape [n_samples, batch_size, d]
self.l_z = tf.transpose(self.l_z, perm=[1, 0, 2]) # shape [batch_size, n_samples, d]
# ---- parameters from decoder, gauss or bernoulli
if out_dist in ['gauss', 'normal', 'truncated_normal']:
with tf.variable_scope('decoder'):
mu, std = self.gauss_decoder(self.l_z)
# ---- p(x|z)
if out_dist == 'truncated_normal':
p_x_given_z = tfp.distributions.TruncatedNormal(loc=mu, scale=std, low=0.0, high=1.0)
else:
p_x_given_z = tfp.distributions.Normal(loc=mu, scale=std)
# ---- evaluate x in p(x|z)
self.log_p_x_given_z = tf.reduce_sum(
tf.expand_dims(self.s_pl, axis=1) * p_x_given_z.log_prob(tf.expand_dims(self.x_pl, axis=1)), axis=-1)
self.l_out_mu = mu
self.l_out_sample = p_x_given_z.sample()
elif out_dist in ['t', 't-distribution']:
with tf.variable_scope('decoder'):
mu, log_sig2, df = self.t_decoder(self.l_z)
# ---- p(x|z)
p_x_given_z = tfp.distributions.StudentT(loc=mu,
scale=tf.nn.softplus(log_sig2) + 0.0001,
df=3 + tf.nn.softplus(df))
self.log_p_x_given_z = tf.reduce_sum(
tf.expand_dims(self.s_pl, axis=1) * p_x_given_z.log_prob(tf.expand_dims(self.x_pl, axis=1)), axis=-1)
self.l_out_mu = mu
self.l_out_sample = p_x_given_z.sample()
elif out_dist == 'bern':
with tf.variable_scope('decoder'):
logits = self.bernoulli_decoder(self.l_z)
# ---- p(x|z)
p_x_given_z = tfp.distributions.Bernoulli(logits=logits) # (probs=y + self.eps)
self.log_p_x_given_z = tf.reduce_sum(
tf.expand_dims(self.s_pl, axis=1) * p_x_given_z.log_prob(tf.expand_dims(self.x_pl, axis=1)), axis=-1)
self.l_out_mu = tf.nn.sigmoid(y)
self.l_out_sample = p_x_given_z.sample()
else:
print("use 'gauss', 'normal', 'truncated_normal' or 'bern' as out_dist")
# --- evaluate the z-samples in q(z|x)
q_z2 = tfp.distributions.Normal(loc=tf.expand_dims(q_z.loc, axis=1), scale=tf.expand_dims(q_z.scale, axis=1))
self.log_q_z_given_x = tf.reduce_sum(q_z2.log_prob(self.l_z), axis=-1)
# ---- evaluate the z-samples in the prior
prior = tfp.distributions.Normal(loc=0.0, scale=1.0)
self.log_p_z = tf.reduce_sum(prior.log_prob(self.l_z), axis=-1)
# ---- MIWAE:
self.MIWAE = self.get_MIWAE(self.log_p_x_given_z, self.log_q_z_given_x, self.log_p_z)
# ---- loss
self.loss = -self.MIWAE
# ---- training stuff
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
self.global_step = tf.Variable(initial_value=0, trainable=False)
self.optimizer = tf.train.AdamOptimizer()
if self.testing:
tvars = tf.trainable_variables(scope='encoder')
else:
tvars = tf.trainable_variables()
self.train_op = self.optimizer.minimize(self.loss, global_step=self.global_step, var_list=tvars)
self.sess.run(tf.global_variables_initializer())
if permutation_invariance:
svars = tf.trainable_variables('decoder')
svars.append(self.global_step)
self.saver = tf.train.Saver(svars)
else:
self.saver = tf.train.Saver()
tf.summary.scalar('Evaluation/loss', self.loss)
tf.summary.scalar('Evaluation/pxz', tf.reduce_mean(self.log_p_x_given_z))
tf.summary.scalar('Evaluation/qzx', tf.reduce_mean(self.log_q_z_given_x))
tf.summary.scalar('Evaluation/pz', tf.reduce_mean(self.log_p_z))
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
self.train_writer = tf.summary.FileWriter(name + '/tensorboard/miwae_train/{}/'.format(timestamp),
self.sess.graph)
self.val_writer = tf.summary.FileWriter(name + '/tensorboard/miwae_val/{}/'.format(timestamp),
self.sess.graph)
self.summaries = tf.summary.merge_all()
def encoder(self, x):
x = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_enc1')(x)
x = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_enc2')(x)
mu = keras.layers.Dense(units=self.n_latent, activation=None, name='q_mu')(x)
log_sig2 = keras.layers.Dense(units=self.n_latent, activation=lambda x: tf.clip_by_value(x, -10, 10),
name='q_log_sigma')(x)
return mu, log_sig2
def gauss_decoder(self, z):
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_dec1')(z)
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_dec2')(z)
mu = keras.layers.Dense(units=self.d, activation=self.out_activation, name='mu')(z)
std = keras.layers.Dense(units=self.d, activation=tf.nn.softplus, name='std')(z)
return mu, std
def t_decoder(self, z):
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, kernel_initializer='orthogonal', name='l_dec1')(z)
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, kernel_initializer='orthogonal', name='l_dec2')(z)
mu = keras.layers.Dense(units=self.d, activation=self.out_activation, kernel_initializer='orthogonal', name='mu')(z)
log_sigma = keras.layers.Dense(units=self.d, activation=lambda x: tf.clip_by_value(x, -10, 10),
kernel_initializer='orthogonal',
name='log_sigma')(z)
df = keras.layers.Dense(units=self.d, activation=None, kernel_initializer='orthogonal', name='df')(z)
return mu, log_sigma, df
def bernoulli_decoder(self, z):
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_dec_bern1')(z)
z = keras.layers.Dense(units=self.n_hidden, activation=self.activation, name='l_dec_bern2')(z)
logits = keras.layers.Dense(units=self.d, activation=None, name='y')(z)
# ---- return logits since it goes better with tfp bernoulli
return logits
def get_MIWAE(self, lpxz, lqzx, lpz):
"""" the MIWAE ELBO """
# ---- importance weights
l_w = lpxz + lpz - lqzx
# ---- sum over samples
log_sum_w = tf.reduce_logsumexp(l_w, axis=1)
# ---- average over samples
log_avg_weight = log_sum_w - tf.log(tf.cast(self.n_pl, tf.float32))
# ---- average over minibatch to get the average llh
return tf.reduce_mean(log_avg_weight, axis=-1)
def permutation_invariant_embedding(self):
"""https://github.com/microsoft/EDDI"""
self.E = tf.get_variable('E', shape=[self.d, self.embedding_size])
# ---- mutliply E and s_pl to zero unobserved dimensions in E
self.Es = tf.expand_dims(self.s_pl, axis=2) * tf.expand_dims(self.E, axis=0)
print("Es", self.Es.shape)
# ---- concatenate with x_pl
self.Esx = tf.concat([self.Es, tf.expand_dims(self.x_pl, axis=2)], axis=2)
print("Esx", self.Esx.shape)
# ---- each 21 dimensional embedding for each of the 784 dimensions needs to go through the same network
self.Esxr = tf.reshape(self.Esx, [-1, self.embedding_size + 1])
print("Esxr", self.Esxr.shape)
# ---- nonlinear mapping h(s_d)
self.h = keras.layers.Dense(units=self.code_size, activation=tf.nn.relu, name='h1')(self.Esxr)
print("h", self.h.shape)
# ---- shape back to reality
self.hr = tf.reshape(self.h, [-1, self.d, self.code_size])
print("hr", self.hr.shape)
# ---- again zero the dimensions with no observations
# ---- (we might get output in these dimensions due to biases in the neural network)
self.hz = tf.expand_dims(self.s_pl, axis=2) * self.hr
print("hz", self.hz.shape)
# ---- permutation invariant aggregation (summation feature dimension)
self.g = tf.reduce_sum(self.hz, axis=1)
print("g", self.g.shape)
return self.g
def train_batch(self, batch_size):
x_batch = self.X[self.batch_pointer: self.batch_pointer + batch_size, :]
s_batch = self.S[self.batch_pointer: self.batch_pointer + batch_size, :]
_, _loss, _step = \
self.sess.run([self.train_op, self.loss, self.global_step],
{self.x_pl: x_batch, self.s_pl: s_batch, self.n_pl: self.n_samples})
self.tick_batch_pointer(batch_size)
return _loss
def val_batch(self):
batch_size = 100
val_loss = 0.0
pxz = 0.0
pz = 0.0
qzx = 0.0
n_val_batches = len(self.Xval) // batch_size
for i in range(n_val_batches):
x_batch = self.Xval[i * batch_size: (i + 1) * batch_size]
s_batch = self.Sval[i * batch_size: (i + 1) * batch_size]
_loss, _pxz, _qzx, _pz, _step = \
self.sess.run([self.loss, self.log_p_x_given_z, self.log_q_z_given_x, self.log_p_z, self.global_step],
{self.x_pl: x_batch, self.s_pl: s_batch, self.n_pl: self.n_samples})
val_loss += _loss
pxz += np.mean(_pxz)
pz += np.mean(_pz)
qzx += np.mean(_qzx)
val_loss /= n_val_batches
pxz /= n_val_batches
pz /= n_val_batches
qzx /= n_val_batches
summary = tf.Summary()
summary.value.add(tag="Evaluation/loss", simple_value=val_loss)
summary.value.add(tag="Evaluation/pxz", simple_value=pxz)
summary.value.add(tag="Evaluation/qzx", simple_value=qzx)
summary.value.add(tag="Evaluation/pz", simple_value=pz)
self.val_writer.add_summary(summary, _step)
self.val_writer.flush()
x_batch = self.X[self.batch_pointer: self.batch_pointer + batch_size, :]
s_batch = self.S[self.batch_pointer: self.batch_pointer + batch_size, :]
_step, _summaries= \
self.sess.run([self.global_step, self.summaries],
{self.x_pl: x_batch, self.s_pl: s_batch, self.n_pl: self.n_samples})
self.train_writer.add_summary(_summaries, _step)
self.train_writer.flush()
return val_loss
def get_llh_estimate(self, Xtest, n_samples=100):
x_batch = Xtest
s_batch = (~np.isnan(Xtest)).astype(np.float32)
_llh = self.sess.run(self.MIWAE,
{self.x_pl: x_batch, self.s_pl: s_batch, self.n_pl: n_samples})
return _llh
def tick_batch_pointer(self, batch_size):
self.batch_pointer += batch_size
if self.batch_pointer >= self.n - batch_size:
self.batch_pointer = 0
try:
p = np.random.permutation(self.n)
self.X = self.X[p, :]
self.S = self.S[p, :]
except MemoryError as error:
print("Memory error: no shuffling this time")
print(error)
except Exception as exception:
print("Unexpected exception")
print(exception)
def save(self, name):
print("Saving session...")
self.saver.save(self.sess, name)
def load(self, name):
print("Restoring session...")
self.saver.restore(self.sess, name)
print("Session restored from global step ", self.sess.run(self.global_step))
@staticmethod
def gauss_loss(x, s, mu, log_sig2):
""" Gauss as p(x | z) """
eps = np.finfo(float).eps
p_x_given_z = - 0.5 * np.log(2 * np.pi) - 0.5 * log_sig2 \
- 0.5 * tf.square(x - mu) / (tf.exp(log_sig2) + eps)
return tf.reduce_sum(p_x_given_z * s, axis=-1) # sum over d-dimension
@staticmethod
def bernoulli_loss(x, s, y):
eps = np.finfo(float).eps
p_x_given_z = x * tf.log(y + eps) + (1 - x) * tf.log(1 - y + eps)
return tf.reduce_sum(s * p_x_given_z, axis=-1) # sum over d-dimension
@staticmethod
def KL_loss(q_mu, q_log_sig2):
KL = 1 + q_log_sig2 - tf.square(q_mu) - tf.exp(q_log_sig2)
return - 0.5 * tf.reduce_sum(KL, axis=1)