-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtask01.py
143 lines (112 loc) · 4.27 KB
/
task01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
Use the MIWAE and not-MIWAE on UCI data
"""
import numpy as np
import pandas as pd
import os
import sys
sys.path.append(os.getcwd())
from MIWAE import MIWAE
from notMIWAE import notMIWAE
import trainer
import utils
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
from sklearn.impute import SimpleImputer
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.ensemble import RandomForestRegressor
def introduce_mising(X):
N, D = X.shape
Xnan = X.copy()
# ---- MNAR in D/2 dimensions
mean = np.mean(Xnan[:, :int(D / 2)], axis=0)
ix_larger_than_mean = Xnan[:, :int(D / 2)] > mean
Xnan[:, :int(D / 2)][ix_larger_than_mean] = np.nan
Xz = Xnan.copy()
Xz[np.isnan(Xnan)] = 0
return Xnan, Xz
# ---- data settings
name = '/tmp/uci/task01/best'
n_hidden = 128
n_samples = 20
max_iter = 100000
batch_size = 16
L = 10000
# ---- choose the missing model
# mprocess = 'linear'
# mprocess = 'selfmasking'
mprocess = 'selfmasking_known'
# ---- number of runs
runs = 1
RMSE_miwae = []
RMSE_notmiwae = []
RMSE_mean = []
RMSE_mice = []
RMSE_RF = []
for _ in range(runs):
# ---- load data
# white wine
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv"
data = np.array(pd.read_csv(url, low_memory=False, sep=';'))
# ---- drop the classification attribute
data = data[:, :-1]
# ----
N, D = data.shape
dl = D - 1
# ---- standardize data
data = data - np.mean(data, axis=0)
data = data / np.std(data, axis=0)
# ---- random permutation
p = np.random.permutation(N)
data = data[p, :]
Xtrain = data.copy()
Xval_org = data.copy()
# ---- introduce missing process
Xnan, Xz = introduce_mising(Xtrain)
S = np.array(~np.isnan(Xnan), dtype=np.float)
Xval, Xvalz = introduce_mising(Xval_org)
# ------------------- #
# ---- fit MIWAE ---- #
# ------------------- #
miwae = MIWAE(Xnan, Xval, n_latent=dl, n_samples=n_samples, n_hidden=n_hidden, name=name)
# ---- do the training
trainer.train(miwae, batch_size=batch_size, max_iter=max_iter, name=name + 'miwae')
# ---- find imputation RMSE
RMSE_miwae.append(utils.imputationRMSE(miwae, Xtrain, Xz, Xnan, S, L)[0])
# ---------------------- #
# ---- fit not-MIWAE---- #
# ---------------------- #
notmiwae = notMIWAE(Xnan, Xval, n_latent=dl, n_samples=n_samples, n_hidden=n_hidden, missing_process=mprocess, name=name)
# ---- do the training
trainer.train(notmiwae, batch_size=batch_size, max_iter=max_iter, name=name + 'notmiwae')
# ---- find imputation RMSE
RMSE_notmiwae.append(utils.not_imputationRMSE(notmiwae, Xtrain, Xz, Xnan, S, L)[0])
# ------------------------- #
# ---- mean imputation ---- #
# ------------------------- #
imp = SimpleImputer(missing_values=np.nan, strategy='mean')
imp.fit(Xnan)
Xrec = imp.transform(Xnan)
RMSE_mean.append(np.sqrt(np.sum((Xtrain - Xrec) ** 2 * (1 - S)) / np.sum(1 - S)))
# ------------------------- #
# ---- mice imputation ---- #
# ------------------------- #
imp = IterativeImputer(max_iter=10, random_state=0)
imp.fit(Xnan)
Xrec = imp.transform(Xnan)
RMSE_mice.append(np.sqrt(np.sum((Xtrain - Xrec) ** 2 * (1 - S)) / np.sum(1 - S)))
# ------------------------------- #
# ---- missForest imputation ---- #
# ------------------------------- #
estimator = RandomForestRegressor(n_estimators=100)
imp = IterativeImputer(estimator=estimator)
imp.fit(Xnan)
Xrec = imp.transform(Xnan)
RMSE_RF.append(np.sqrt(np.sum((Xtrain - Xrec) ** 2 * (1 - S)) / np.sum(1 - S)))
print('RMSE, MIWAE {0:.5f}, notMIWAE {1:.5f}, MEAN {2:.5f}, MICE {3:.5f}, missForest {4:.5f}'
.format(RMSE_miwae[-1], RMSE_notmiwae[-1], RMSE_mean[-1], RMSE_mice[-1], RMSE_RF[-1]))
print("RMSE_miwae = {0:.5f} +- {1:.5f}".format(np.mean(RMSE_miwae), np.std(RMSE_miwae)))
print("RMSE_notmiwae = {0:.5f} +- {1:.5f}".format(np.mean(RMSE_notmiwae), np.std(RMSE_notmiwae)))
print("RMSE_mean = {0:.5f} +- {1:.5f}".format(np.mean(RMSE_mean), np.std(RMSE_mean)))
print("RMSE_mice = {0:.5f} +- {1:.5f}".format(np.mean(RMSE_mice), np.std(RMSE_mice)))
print("RMSE_missForest = {0:.5f} +- {1:.5f}".format(np.mean(RMSE_RF), np.std(RMSE_RF)))