-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
79 lines (51 loc) · 2.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
def imputationRMSE(model, Xorg, Xz, X, S, L):
"""
Imputation error of missing data
"""
N = len(X)
def softmax(x):
e_x = np.exp(x - np.max(x, axis=1)[:, None])
return e_x / e_x.sum(axis=1)[:, None]
def imp(model, xz, s, L):
l_out, log_p_x_given_z, log_p_z, log_q_z_given_x = model.sess.run(
[model.l_out_mu, model.log_p_x_given_z, model.log_p_z, model.log_q_z_given_x],
{model.x_pl: xz, model.s_pl: s, model.n_pl: L})
wl = softmax(log_p_x_given_z + log_p_z - log_q_z_given_x)
xm = np.sum((l_out.T * wl.T).T, axis=1)
xmix = xz + xm * (1 - s)
return l_out, wl, xm, xmix
XM = np.zeros_like(Xorg)
for i in range(N):
xz = Xz[i, :][None, :]
s = S[i, :][None, :]
l_out, wl, xm, xmix = imp(model, xz, s, L)
XM[i, :] = xm
if i % 100 == 0:
print('{0} / {1}'.format(i, N))
return np.sqrt(np.sum((Xorg - XM) ** 2 * (1 - S)) / np.sum(1 - S)), XM
def not_imputationRMSE(model, Xorg, Xz, X, S, L):
"""
Imputation error of missing data, using the not-MIWAE
"""
N = len(X)
def softmax(x):
e_x = np.exp(x - np.max(x, axis=1)[:, None])
return e_x / e_x.sum(axis=1)[:, None]
def imp(model, xz, s, L):
l_out, log_p_x_given_z, log_p_z, log_q_z_given_x, log_p_s_given_x = model.sess.run(
[model.l_out_mu, model.log_p_x_given_z, model.log_p_z, model.log_q_z_given_x, model.log_p_s_given_x],
{model.x_pl: xz, model.s_pl: s, model.n_pl: L})
wl = softmax(log_p_x_given_z + log_p_s_given_x + log_p_z - log_q_z_given_x)
xm = np.sum((l_out.T * wl.T).T, axis=1)
xmix = xz + xm * (1 - s)
return l_out, wl, xm, xmix
XM = np.zeros_like(Xorg)
for i in range(N):
xz = Xz[i, :][None, :]
s = S[i, :][None, :]
l_out, wl, xm, xmix = imp(model, xz, s, L)
XM[i, :] = xm
if i % 100 == 0:
print('{0} / {1}'.format(i, N))
return np.sqrt(np.sum((Xorg - XM) ** 2 * (1 - S)) / np.sum(1 - S)), XM