-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNight-light.ino
247 lines (209 loc) · 6.97 KB
/
Night-light.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Version 1.2.1Test Brighness code. Minor Cleanup.
// Version 1.2 BTest Brighness code.
// Version 1.1 Before reorginizing code.
// This is a demonstration on how to use an input device to trigger changes on your neo pixels.
// You should wire a momentary push button to connect from ground to a digital IO pin. When you
// press the button it will change to a new pixel animation. Note that you need to press the
// button once to start the first animation!
#include <Adafruit_NeoPixel.h>
#define BUTTON_PIN A0 // Digital IO pin connected to the button. This will be
// driven with a pull-up resistor so the switch should
// pull the pin to ground momentarily. On a high -> low
// transition the button press logic will execute.
#define PIXEL_PIN 6 // Digital IO pin connected to the NeoPixels.
#define PIXEL_COUNT 8
#define encoder0PinA 2
#define encoder0PinB 4
#define increment 1
volatile byte brightness = 1;
volatile byte red = 0x80;
volatile byte green = 0x80;
volatile byte blue = 0x80;
volatile byte color=1;
// Parameter 1 = number of pixels in strip, neopixel stick has 8
// Parameter 2 = pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_RGB Pixels are wired for RGB bitstream
// NEO_GRB Pixels are wired for GRB bitstream, correct for neopixel stick
// NEO_KHZ400 400 KHz bitstream (e.g. FLORA pixels)
// NEO_KHZ800 800 KHz bitstream (e.g. High Density LED strip), correct for neopixel stick
Adafruit_NeoPixel strip = Adafruit_NeoPixel(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800);
bool oldState = HIGH;
int showType = 0;
void setup() {
pinMode(BUTTON_PIN, INPUT_PULLUP);
strip.begin();
strip.setPixelColor(7,strip.Color(0,0,5));
strip.show(); // Initialize one pixels to 'Blue'
strip.setPixelColor(6,strip.Color(0,5,0));
strip.show(); // Initialize one pixels to 'Green'
strip.setPixelColor(5,strip.Color(5,0,0));
strip.show(); // Initialize one pixels to 'Red'
delay(2000);
//colorWipe(strip.Color(red, green, blue), 50);
//strip.show(); // Initialize all pixels to 'RGB' value
pinMode(encoder0PinA, INPUT);
digitalWrite(encoder0PinA, HIGH); // turn on pullup resistor
pinMode(encoder0PinB, INPUT);
digitalWrite(encoder0PinB, HIGH); // turn on pullup resistor
attachInterrupt(0, doEncoder, CHANGE); // encoder pin on interrupt 0 - pin 2
Serial.begin (9600);
Serial.println("start"); // a personal quirk
Serial.println(brightness,HEX);
}
void loop() {
// Get current button state.
bool newState = digitalRead(BUTTON_PIN);
// Check if state changed from high to low (button press).
if (newState == LOW && oldState == HIGH) {
// Short delay to debounce button.
delay(30);
// Check if button is still low after debounce.
newState = digitalRead(BUTTON_PIN);
if (newState == LOW) {
/* showType++;
if (showType > 3)
showType=0;
startShow(showType);*/
changecolor(color);
color++;
if (color >= 4) color=1;
}
}
// Set the last button state to the old state.
oldState = newState;
Serial.println(brightness,DEC);
delay(100);
colorWipe(strip.Color(red * int(brightness *.1), green * int(brightness *.1), blue * int(brightness *.1)), 0);
}
void changecolor(byte i) {
switch(i){
case 1: red=10; green=0; blue=0; // Red
break;
case 2: red=0; green=10; blue=0; // Green
break;
case 3: red=0; green=0; blue=10; // Blue
break;
}
colorWipe(strip.Color(red * int(brightness *.1), green * int(brightness *.1), blue * int(brightness *.1)), 0);
}
void startShow(int i) {
switch(i){
case 0: colorWipe(strip.Color(red, green, blue), 50); // Black/off
break;
case 1: colorWipe(strip.Color(red, green, blue), 50); // Red
break;
case 2: colorWipe(strip.Color(red,green, blue), 50); // Green
break;
case 3: colorWipe(strip.Color(red,green, blue), 50); // Blue
break;
case 4: rainbowCycle(20);
break;
}
}
// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
for(uint16_t i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, c);
strip.show();
delay(wait);
}
Serial.print(red,HEX);
Serial.print(green,HEX);
Serial.print(blue,HEX);
}
void rainbow(uint8_t wait) {
uint16_t i, j;
for(j=0; j<256; j++) {
for(i=0; i<strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel((i+j) & 255));
}
strip.show();
delay(wait);
}
}
// Slightly different, this makes the rainbow equally distributed throughout
void rainbowCycle(uint8_t wait) {
uint16_t i, j;
for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< strip.numPixels(); i++) {
strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) & 255));
}
strip.show();
delay(wait);
}
}
// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(byte WheelPos) {
WheelPos = 255 - WheelPos;
if(WheelPos < 85) {
return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
} else if(WheelPos < 170) {
WheelPos -= 85;
return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
} else {
WheelPos -= 170;
return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
}
void doEncoder() {
/*Serial.print("Start doEncoder: ");
Serial.println(red,HEX);
*/
/* If pinA and pinB are both high or both low, it is spinning
* forward. If they're different, it's going backward.
*
* For more information on speeding up this process, see
* [Reference/PortManipulation], specifically the PIND register.
*/
if (digitalRead(encoder0PinA) == digitalRead(encoder0PinB)) {
brightness++;
if (brightness >= 10) brightness=10;
/*
//brightness = leftRotate(brightness);
brightness++;
if (brightness >= 7) brightness=1;
red = red >> brightness;
green = green >> brightness;
blue = blue >> brightness;
colorWipe(strip.Color(red, green, blue), 0);
strip.show();
*/
} else {
brightness--;
if (brightness <= 0) brightness=0;
/*
//brightness = rightRotate(brightness);
brightness--;
if (brightness <= 0) brightness=8;
red = red << brightness;
green = green << brightness;
blue = blue << brightness;
colorWipe(strip.Color(red, green, blue), 0);
strip.show();
*/
}
/*
Serial.print("In doEncoder: ");
Serial.println(red,HEX);
Serial.println(green,HEX);
Serial.println(blue,HEX);
Serial.println(brightness,HEX);
//Serial.println(brightness);
//Serial.println (brightness, DEC);
delay(20);
*/
}
/*Function to left rotate N*/
int leftRotate(byte N)
{
//Rotate Byte Left
return((byte)(N << 1) | (N >> 7)); // rotate left
}
/*Function to right rotate N*/
int rightRotate(byte N)
{
//Rotate Byte Right
return(N = (byte)(N >> 1) | (N << 7)); // rotate right
}