-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathwhatsapp_bot.py
174 lines (148 loc) · 5.68 KB
/
whatsapp_bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import copy
import os
import re
from threading import Thread
from time import sleep
from typing import Dict
from typing import List
import openai
from dotenv import load_dotenv
from flask import Flask
from flask import request
from twilio.rest import Client
from twilio.twiml.messaging_response import MessagingResponse
from genai.eyfs.eyfs import TextGenerator
from genai.utils import read_json
load_dotenv()
# Twilio settings
client = Client(os.environ["TWILIO_ACCOUNT_SID"], os.environ["TWILIO_AUTH_TOKEN"])
# OpenAI model
LLM = "gpt-3.5-turbo"
TEMPERATURE = 0.5
openai.api_key = os.environ["OPENAI_API_KEY"]
# Prepare ELI3 base prompt
ELI3_MESSAGES = read_json("src/genai/whatsapp_bot/prompts/eli3/eli3.json")
# Prepare EYFS base prompt and parameters
areas_of_learning = [
"Communication and Language",
"Personal, Social and Emotional Development",
"Physical Development",
"Literacy",
"Mathematics",
"Understanding the World",
"Expressive Arts and Design",
]
areas_of_learning_desc = read_json("src/genai/eyfs/areas_of_learning.json")
areas_of_learning_text = [v for k, v in areas_of_learning_desc.items() if k in areas_of_learning]
eyfs_paths = [
"src/genai/eyfs/prompts/system.json",
"src/genai/eyfs/prompts/context_and_task.json",
"src/genai/eyfs/prompts/constraints.json",
"src/genai/eyfs/prompts/situation.json",
]
EYFS_MESSAGES = [read_json(path) for path in eyfs_paths]
EYFS_PARAMETERS = {
"areas_of_learning": areas_of_learning,
"n_results": 5,
"location": "Indoors or Outdoors",
"areas_of_learning_text": areas_of_learning_text,
}
# Initiate the Flask app
app = Flask(__name__)
def format_activities_text(text: str) -> str:
"""Format the response from the EYFS generator for better display in WhatsApp"""
text = (
text.replace("## Conversations", "*Conversations*\n")
.replace("## Games and Crafts", "*Games and Crafts*\n")
.replace("**Activity description**", "_Activity description_")
.replace("**Areas of learning**", "_Areas of learning_")
)
# replace markdown subheadings with bold italics
text = re.sub(r"###\s*(.+)", r"*_\1_*", text)
return text
def generate_reply(incoming_message: str, sender_contact: str, receiver_contact: str) -> str:
"""Parse message text and return an appropriate response.
Presently supports two types of responses: 'explain' and 'activities'
Activities response is threaded to allow for longer response times. This is a very basic
workaround to the 15 second timeout limit imposed by Twilio.
Args:
incoming_message:
Message text
sender_contact:
Sender's contact, follows a format 'whatsapp:+<phone number>'
receiver_contact:
Receiver's contact (ie, my contact), follows a format 'whatsapp:+<phone number>'
Returns:
Response text
"""
text_message = incoming_message.lower()
# 'explain' response
if text_message[0:7] == "explain":
response = TextGenerator.generate(
model=LLM,
temperature=TEMPERATURE,
messages=[ELI3_MESSAGES.copy()],
message_kwargs={"input": text_message[7:].strip()},
)
return response["choices"][0]["message"]["content"]
# 'activities' response
elif "activities" in text_message[0:10]:
EYFS_PARAMETERS["description"] = text_message
thread = Thread(
target=send_text, args=[copy.deepcopy(EYFS_MESSAGES), EYFS_PARAMETERS, receiver_contact, sender_contact]
)
thread.start()
return "Thank you for your question. I am thinking..."
else:
# Return a default message
return (
'Write "Explain <your question>" to explain a concept to a 3-year old \n\n or'
+ '\n\n "Activities <your topic>" to get activity ideas'
)
def send_text(messages: List[Dict], message_kwargs: Dict, my_contact: str, receiver_contact: str) -> None:
"""Generate text messages and send them to a given contact
Args:
messages:
List of messages to be used as prompts
message_kwargs:
Dictionary of keyword arguments to be passed to the TextGenerator
my_contact:
Sender's contact, follows a format 'whatsapp:+<phone number>'
receiver_contact:
Receiver's contact (ie, my contact), follows a format 'whatsapp:+<phone number>'
"""
# Generate response to the message
response = TextGenerator.generate(
model=LLM,
temperature=TEMPERATURE,
messages=messages,
message_kwargs=message_kwargs,
)
text_body = response["choices"][0]["message"]["content"]
# Format the text_body for better display on WhatsApp
text_body = format_activities_text(text_body)
# Divide output into 1500 character chunks due to WhatsApp character limit of 1600 chars
texts = [text_body[i : i + 1500] for i in range(0, len(text_body), 1500)]
# Send message
for text in texts:
client.messages.create(body=text, from_=my_contact, to=receiver_contact)
sleep(0.5)
return
@app.route("/")
def hello_world() -> str:
"""Information message"""
return "Nesta generative AI prototype: WhatsApp bot for suggesting kids activities"
@app.route("/text", methods=["POST"])
def text_reply() -> str:
"""Respond to incoming messages"""
reply = generate_reply(
incoming_message=request.form.get("Body"),
sender_contact=request.form.get("From"),
receiver_contact=request.form.get("To"),
)
resp = MessagingResponse()
resp.message(reply)
return str(resp)
if __name__ == "__main__":
port = int(os.environ.get("PORT", 5000))
app.run(debug=False, host="0.0.0.0", port=port)