-
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathchunk.py
95 lines (74 loc) · 2.69 KB
/
chunk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import itertools
import os
import networkx as nx
__all__ = ["chunks", "get_n_jobs", "create_iterables"]
def chunks(iterable, n_chunks):
"""Yield exactly `n_chunks` chunks from `iterable`, balancing the chunk sizes."""
iterable = list(iterable)
k, m = divmod(len(iterable), n_chunks)
it = iter(iterable)
for _ in range(n_chunks):
chunk_size = k + (1 if m > 0 else 0)
m -= 1
yield tuple(itertools.islice(it, chunk_size))
def get_n_jobs(n_jobs=None):
"""Get the positive value of `n_jobs`
Returns the positive value of `n_jobs` by either extracting it from the
active configuration system or modifying the passed-in value, similar to
joblib's behavior.
- If running under pytest, it returns 2 jobs.
- If the `active` configuration in NetworkX's config is `True`, `n_jobs`
is extracted from the NetworkX config.
- Otherwise, `n_jobs` is obtained from joblib's active backend.
- `ValueError` is raised if `n_jobs` is 0.
"""
if "PYTEST_CURRENT_TEST" in os.environ:
return 2
if n_jobs is None:
if nx.config.backends.parallel.active:
n_jobs = nx.config.backends.parallel.n_jobs
else:
from joblib.parallel import get_active_backend
n_jobs = get_active_backend()[1]
if n_jobs is None:
return 1
if n_jobs < 0:
return os.cpu_count() + n_jobs + 1
if n_jobs == 0:
raise ValueError("n_jobs == 0 in Parallel has no meaning")
return int(n_jobs)
def create_iterables(G, iterator, n_cores, list_of_iterator=None):
"""Create an iterable of function inputs for parallel computation
based on the provided iterator type.
Parameters
----------
G : NetworkX graph
The NetworkX graph.
iterator : str
Type of iterator. Valid values are 'node', 'edge', 'isolate'
n_cores : int
The number of cores to use.
list_of_iterator : list, optional
A precomputed list of items to iterate over. If None, it will
be generated based on the iterator type.
Returns
-------
iterable : Iterable
An iterable of function inputs.
Raises
------
ValueError
If the iterator type is not one of "node", "edge" or "isolate".
"""
if not list_of_iterator:
if iterator == "node":
list_of_iterator = list(G.nodes)
elif iterator == "edge":
list_of_iterator = list(G.edges)
elif iterator == "isolate":
list_of_iterator = list(nx.isolates(G))
else:
raise ValueError(f"Invalid iterator type: {iterator}")
if not list_of_iterator:
return iter([])
return chunks(list_of_iterator, n_cores)