This repository has been archived by the owner on Feb 17, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathmain.py
97 lines (92 loc) · 3.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from caption_generator import *
from utils.data_util import generate_captions
from configuration import Configuration
import os, sys
import argparse
import json
parser = argparse.ArgumentParser()
parser.add_argument(
"--mode",
type=str,
help="train|test|eval",
choices=[
"train",
"test",
"eval"],
required=True)
parser.add_argument(
"--resume",
help="make model training resumable",
action="store_true")
parser.add_argument(
"--caption_path",
type=str,
help="A valid path to COCO/flickr30k caption file: results_20130124.token/captions_val2014.json")
parser.add_argument(
"--feature_path",
type=str,
help="A valid path to COCO/flickr30k image features: features.npy")
parser.add_argument(
"--data_is_coco",
help="Is dataset MSCOCO? converts COCO caption data to flickr30k format",
action="store_true")
parser.add_argument(
"--inception_path",
type=str,
help="A valid path to inception_v4.pb",
default="ConvNets/inception_v4.pb")
parser.add_argument(
"--saveencoder",
help="Save Decoder graph in model/Encoder/",
action="store_true")
parser.add_argument(
"--savedecoder",
help="Save Decoder graph in model/Decoder/",
action="store_true")
parser.add_argument(
"--image_path",
type=str,
help="If mode is test then, Path to the Image for Generation of Captions")
parser.add_argument(
"--load_image",
help="If mode is test then, displays and stores image with generated caption",
action="store_true")
parser.add_argument(
"--validation_data",
type=str,
help="If mode is eval then, Path to the Validation Data for evaluation")
args = parser.parse_args()
config = Configuration(vars(args))
if config.mode == "train":
vocab, wtoidx, training_data = generate_captions(
config.word_threshold, config.max_len, args.caption_path, args.feature_path,
config.data_is_coco)
features, captions = training_data[:, 0], training_data[:, 1]
features = np.array([feat.astype(float) for feat in features])
data = (vocab.tolist(), wtoidx.tolist(), features, captions)
model = Caption_Generator(config, data=data)
loss, inp_dict = model.build_train_graph()
model.train(loss, inp_dict)
elif config.mode == "test":
if os.path.exists(args.image_path):
model = Caption_Generator(config)
model.decode(args.image_path)
else:
print "Please provide a valid image path.\n Usage:\n python main.py --mode test --image_path VALID_PATH"
elif config.mode == "eval":
config.mode = "test"
config.batch_decode = True
print args.validation_data
if os.path.exists(args.validation_data):
features = np.load(args.validation_data)
#with open("Dataset/Validation_Captions.txt") as f:
# data = f.readlines()
with open("Dataset/image_info_test2014.json",'r') as f:
data=json.load(f)
#filenames = [caps.split('\t')[0].split('#')[0] for caps in data]
filenames = sorted([d["file_name"].split('.')[0] for d in data['images']])
#captions = [caps.replace('\n', '').split('\t')[1] for caps in data]
#features, captions = validation_data[:, 0], validation_data[:, 1]
features = np.array([feat.astype(float) for feat in features])
model = Caption_Generator(config)
generated_captions = model.batch_decoder(filenames, features)