-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathdirectional_change.py
112 lines (66 loc) · 2.63 KB
/
directional_change.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mplfinance as mpf
def directional_change(close: np.array, high: np.array, low: np.array, sigma: float):
up_zig = True # Last extreme is a bottom. Next is a top.
tmp_max = high[0]
tmp_min = low[0]
tmp_max_i = 0
tmp_min_i = 0
tops = []
bottoms = []
for i in range(len(close)):
if up_zig: # Last extreme is a bottom
if high[i] > tmp_max:
# New high, update
tmp_max = high[i]
tmp_max_i = i
elif close[i] < tmp_max - tmp_max * sigma:
# Price retraced by sigma %. Top confirmed, record it
# top[0] = confirmation index
# top[1] = index of top
# top[2] = price of top
top = [i, tmp_max_i, tmp_max]
tops.append(top)
# Setup for next bottom
up_zig = False
tmp_min = low[i]
tmp_min_i = i
else: # Last extreme is a top
if low[i] < tmp_min:
# New low, update
tmp_min = low[i]
tmp_min_i = i
elif close[i] > tmp_min + tmp_min * sigma:
# Price retraced by sigma %. Bottom confirmed, record it
# bottom[0] = confirmation index
# bottom[1] = index of bottom
# bottom[2] = price of bottom
bottom = [i, tmp_min_i, tmp_min]
bottoms.append(bottom)
# Setup for next top
up_zig = True
tmp_max = high[i]
tmp_max_i = i
return tops, bottoms
def get_extremes(ohlc: pd.DataFrame, sigma: float):
tops, bottoms = directional_change(ohlc['close'], ohlc['high'], ohlc['low'], sigma)
tops = pd.DataFrame(tops, columns=['conf_i', 'ext_i', 'ext_p'])
bottoms = pd.DataFrame(bottoms, columns=['conf_i', 'ext_i', 'ext_p'])
tops['type'] = 1
bottoms['type'] = -1
extremes = pd.concat([tops, bottoms])
extremes = extremes.set_index('conf_i')
extremes = extremes.sort_index()
return extremes
if __name__ == '__main__':
data = pd.read_csv('BTCUSDT3600.csv')
data['date'] = data['date'].astype('datetime64[s]')
data = data.set_index('date')
tops, bottoms = directional_change(data['close'].to_numpy(), data['high'].to_numpy(), data['low'].to_numpy(), 0.02)
pd.Series(data['close'].to_numpy()).plot()
idx = data.index
for top in tops:
plt.plot(top[1], top[2], marker='o', color='green', markersize=4)
plt.show()