-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathhead_shoulders.py
472 lines (357 loc) · 15 KB
/
head_shoulders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mplfinance as mpf
from rolling_window import rw_top, rw_bottom
from typing import List
from collections import deque
from dataclasses import dataclass
@dataclass
class HSPattern:
# True if inverted, False if not. Inverted is "bullish" according to technical analysis dogma
inverted: bool
# Indices of the parts of the H&S pattern
l_shoulder: int = -1
r_shoulder: int = -1
l_armpit: int = -1
r_armpit: int = -1
head: int = -1
# Price of the parts of the H&S pattern. _p stands for price.
l_shoulder_p: float = -1
r_shoulder_p: float = -1
l_armpit_p: float = -1
r_armpit_p: float = -1
head_p: float = -1
start_i: int = -1
break_i: int = -1
break_p: float = -1
neck_start: float = -1
neck_end: float = -1
# Attributes
neck_slope: float = -1
head_width: float = -1
head_height: float = -1
pattern_r2: float = -1
def compute_pattern_r2(data: np.array, pat: HSPattern):
line0_slope = (pat.l_shoulder_p - pat.neck_start) / (pat.l_shoulder - pat.start_i)
line0 = pat.neck_start + np.arange(pat.l_shoulder - pat.start_i) * line0_slope
line1_slope = (pat.l_armpit_p - pat.l_shoulder_p) / (pat.l_armpit - pat.l_shoulder)
line1 = pat.l_shoulder_p + np.arange(pat.l_armpit - pat.l_shoulder) * line1_slope
line2_slope = (pat.head_p - pat.l_armpit_p) / (pat.head - pat.l_armpit)
line2 = pat.l_armpit_p + np.arange(pat.head - pat.l_armpit) * line2_slope
line3_slope = (pat.r_armpit_p - pat.head_p) / (pat.r_armpit - pat.head)
line3 = pat.head_p + np.arange(pat.r_armpit - pat.head) * line3_slope
line4_slope = (pat.r_shoulder_p - pat.r_armpit_p) / (pat.r_shoulder - pat.r_armpit)
line4 = pat.r_armpit_p + np.arange(pat.r_shoulder - pat.r_armpit) * line4_slope
line5_slope = (pat.break_p - pat.r_shoulder_p) / (pat.break_i - pat.r_shoulder)
line5 = pat.r_shoulder_p + np.arange(pat.break_i - pat.r_shoulder) * line5_slope
raw_data = data[pat.start_i:pat.break_i]
hs_model = np.concatenate([line0, line1, line2, line3, line4, line5])
mean = np.mean(raw_data)
ss_res = np.sum( (raw_data - hs_model) ** 2.0 )
ss_tot = np.sum( (raw_data - mean) ** 2.0 )
r2 = 1.0 - ss_res / ss_tot
return r2
def check_hs_pattern(extrema_indices: List[int], data: np.array, i:int, early_find: bool = False) -> HSPattern:
''' Returns a HSPattern if found, or None if not found '''
# Unpack list
l_shoulder = extrema_indices[0]
l_armpit = extrema_indices[1]
head = extrema_indices[2]
r_armpit = extrema_indices[3]
if i - r_armpit < 2:
return None
# Find right shoulder as max price since r_armpit
r_shoulder = r_armpit + data[r_armpit + 1: i].argmax() + 1
# Head must be higher than shoulders
if data[head] <= max(data[l_shoulder], data[r_shoulder]):
return None
# Balance rule. Shoulders are above the others midpoint.
# A shoulder's midpoint is the midpoint between the shoulder and armpit
r_midpoint = 0.5 * (data[r_shoulder] + data[r_armpit])
l_midpoint = 0.5 * (data[l_shoulder] + data[l_armpit])
if data[l_shoulder] < r_midpoint or data[r_shoulder] < l_midpoint:
return None
# Symmetry rule. time from shoulder to head are comparable
r_to_h_time = r_shoulder - head
l_to_h_time = head - l_shoulder
if r_to_h_time > 2.5 * l_to_h_time or l_to_h_time > 2.5 * r_to_h_time:
return None
# Compute neckline
neck_run = r_armpit - l_armpit
neck_rise = data[r_armpit] - data[l_armpit]
neck_slope = neck_rise / neck_run
# neckline value at current index
neck_val = data[l_armpit] + (i - l_armpit) * neck_slope
# Confirm pattern when price is halfway from right shoulder
if early_find:
if data[i] > r_midpoint:
return None
else:
# Price has yet to break neckline, unconfirmed
if data[i] > neck_val:
return None
# Find beginning of pattern. Neck to left shoulder
head_width = r_armpit - l_armpit
pat_start = -1
neck_start = -1
for j in range(1, head_width):
neck = data[l_armpit] + (l_shoulder - l_armpit - j) * neck_slope
if l_shoulder - j < 0:
return None
if data[l_shoulder - j] < neck:
pat_start = l_shoulder - j
neck_start = neck
break
if pat_start == -1:
return None
# Pattern confirmed if here :)
pat = HSPattern(inverted=False)
pat.l_shoulder = l_shoulder
pat.r_shoulder = r_shoulder
pat.l_armpit = l_armpit
pat.r_armpit = r_armpit
pat.head = head
pat.l_shoulder_p = data[l_shoulder]
pat.r_shoulder_p = data[r_shoulder]
pat.l_armpit_p = data[l_armpit]
pat.r_armpit_p = data[r_armpit]
pat.head_p = data[head]
pat.start_i = pat_start
pat.break_i = i
pat.break_p = data[i]
pat.neck_start = neck_start
pat.neck_end = neck_val
pat.neck_slope = neck_slope
pat.head_width = head_width
pat.head_height = data[head] - (data[l_armpit] + (head - l_armpit) * neck_slope)
pat.pattern_r2 = compute_pattern_r2(data, pat)
# I experiemented with r-squared as a filter for H&S, but this can delay recognition.
# It didn't seem terribly potent, may be useful as a filter in conjunction with other attributes
# if one wanted to add a machine learning layer before trading these patterns.
#if pat.pattern_r2 < 0.0:
# return None
return pat
def check_ihs_pattern(extrema_indices: List[int], data: np.array, i:int, early_find: bool = False) -> HSPattern:
# Unpack list
l_shoulder = extrema_indices[0]
l_armpit = extrema_indices[1]
head = extrema_indices[2]
r_armpit = extrema_indices[3]
if i - r_armpit < 2:
return None
# Find right shoulder as max price since r_armpit
r_shoulder = r_armpit + data[r_armpit+1: i].argmin() + 1
# Head must be lower than shoulders
if data[head] >= min(data[l_shoulder], data[r_shoulder]):
return None
# Balance rule. Shoulders are below the others midpoint.
# A shoulder's midpoint is the midpoint between the shoulder and armpit
r_midpoint = 0.5 * (data[r_shoulder] + data[r_armpit])
l_midpoint = 0.5 * (data[l_shoulder] + data[l_armpit])
if data[l_shoulder] > r_midpoint or data[r_shoulder] > l_midpoint:
return None
# Symmetry rule. time from shoulder to head are comparable
r_to_h_time = r_shoulder - head
l_to_h_time = head - l_shoulder
if r_to_h_time > 2.5 * l_to_h_time or l_to_h_time > 2.5 * r_to_h_time:
return None
# Compute neckline
neck_run = r_armpit - l_armpit
neck_rise = data[r_armpit] - data[l_armpit]
neck_slope = neck_rise / neck_run
# neckline value at current index
neck_val = data[l_armpit] + (i - l_armpit) * neck_slope
# Confirm pattern when price is halfway from right shoulder
if early_find:
if data[i] < r_midpoint:
return None
else:
# Price has yet to break neckline, unconfirmed
if data[i] < neck_val:
return None
# Find beginning of pattern. Neck to left shoulder
head_width = r_armpit - l_armpit
pat_start = -1
neck_start = -1
for j in range(1, head_width):
neck = data[l_armpit] + (l_shoulder - l_armpit - j) * neck_slope
if l_shoulder - j < 0:
return None
if data[l_shoulder - j] > neck:
pat_start = l_shoulder - j
neck_start = neck
break
if pat_start == -1:
return None
# Pattern confirmed if here :)
pat = HSPattern(inverted=True)
pat.l_shoulder = l_shoulder
pat.r_shoulder = r_shoulder
pat.l_armpit = l_armpit
pat.r_armpit = r_armpit
pat.head = head
pat.l_shoulder_p = data[l_shoulder]
pat.r_shoulder_p = data[r_shoulder]
pat.l_armpit_p = data[l_armpit]
pat.r_armpit_p = data[r_armpit]
pat.head_p = data[head]
pat.start_i = pat_start
pat.break_i = i
pat.break_p = data[i]
pat.neck_start = neck_start
pat.neck_end = neck_val
pat.pattern_r2 = compute_pattern_r2(data, pat)
pat.neck_slope = neck_slope
pat.head_width = head_width
pat.head_height = (data[l_armpit] + (head - l_armpit) * neck_slope) - data[head]
pat.pattern_r2 = compute_pattern_r2(data, pat)
#if pat.pattern_r2 < 0.0:
# return None
return pat
def find_hs_patterns(data: np.array, order:int, early_find:bool = False):
assert(order >= 1)
# head and shoulders top checked from/after a confirmed bottom (before right shoulder)
# head and shoulders bottom checked from/after a confirmed top
last_is_top = False
recent_extrema = deque(maxlen=5)
recent_types = deque(maxlen=5) # -1 for bottoms 1 for tops
# Lock variables to prevent finding the same pattern multiple times
hs_lock = False
ihs_lock = False
ihs_patterns = [] # Inverted (bullish)
hs_patterns = [] # Regular (bearish)
for i in range(len(data)):
if rw_top(data, i, order):
recent_extrema.append(i - order)
recent_types.append(1)
ihs_lock = False
last_is_top = True
if rw_bottom(data, i, order):
recent_extrema.append(i - order)
recent_types.append(-1)
hs_lock = False
last_is_top = False
if len(recent_extrema) < 5:
continue
hs_alternating = True
ihs_alternating = True
if last_is_top:
for j in range(2, 5):
if recent_types[j] == recent_types[j - 1]:
ihs_alternating = False
for j in range(1, 4):
if recent_types[j] == recent_types[j - 1]:
hs_alternating = False
ihs_extrema = list(recent_extrema)[1:5]
hs_extrema = list(recent_extrema)[0:4]
else:
for j in range(2, 5):
if recent_types[j] == recent_types[j - 1]:
hs_alternating = False
for j in range(1, 4):
if recent_types[j] == recent_types[j - 1]:
ihs_alternating = False
ihs_extrema = list(recent_extrema)[0:4]
hs_extrema = list(recent_extrema)[1:5]
if ihs_lock or not ihs_alternating:
ihs_pat = None
else:
ihs_pat = check_ihs_pattern(ihs_extrema, data, i, early_find)
if hs_lock or not hs_alternating:
hs_pat = None
else:
hs_pat = check_hs_pattern(hs_extrema, data, i, early_find)
if hs_pat is not None:
hs_lock = True
hs_patterns.append(hs_pat)
if ihs_pat is not None:
ihs_lock = True
ihs_patterns.append(ihs_pat)
return hs_patterns, ihs_patterns
def get_pattern_return(data: np.array, pat: HSPattern, log_prices: bool = True) -> float:
entry_price = pat.break_p
entry_i = pat.break_i
stop_price = pat.r_shoulder_p
if pat.inverted:
tp_price = pat.neck_end + pat.head_height
else:
tp_price = pat.neck_end - pat.head_height
exit_price = -1
for i in range(pat.head_width):
if entry_i + i >= len(data):
return np.nan
exit_price = data[entry_i + i]
if pat.inverted and (exit_price > tp_price or exit_price < stop_price):
break
if not pat.inverted and (exit_price < tp_price or exit_price > stop_price):
break
if pat.inverted: # Long
if log_prices:
return exit_price - entry_price
else:
return (exit_price - entry_price) / entry_price
else: # Short
if log_prices:
return entry_price - exit_price
else:
return -1 * (exit_price - entry_price) / entry_price
def plot_hs(candle_data: pd.DataFrame, pat: HSPattern, pad: int = 2):
if pad < 0:
pad = 0
idx = candle_data.index
data = candle_data.iloc[pat.start_i:pat.break_i + 1 + pad]
plt.style.use('dark_background')
fig = plt.gcf()
ax = fig.gca()
l0 = [(idx[pat.start_i], pat.neck_start), (idx[pat.l_shoulder], pat.l_shoulder_p)]
l1 = [(idx[pat.l_shoulder], pat.l_shoulder_p), (idx[pat.l_armpit], pat.l_armpit_p)]
l2 = [(idx[pat.l_armpit], pat.l_armpit_p ), (idx[pat.head], pat.head_p)]
l3 = [(idx[pat.head], pat.head_p ), (idx[pat.r_armpit], pat.r_armpit_p)]
l4 = [(idx[pat.r_armpit], pat.r_armpit_p ), (idx[pat.r_shoulder], pat.r_shoulder_p)]
l5 = [(idx[pat.r_shoulder], pat.r_shoulder_p ), (idx[pat.break_i], pat.neck_end)]
neck = [(idx[pat.start_i], pat.neck_start), (idx[pat.break_i], pat.neck_end)]
mpf.plot(data, alines=dict(alines=[l0, l1, l2, l3, l4, l5, neck ], colors=['w', 'w', 'w', 'w', 'w', 'w', 'r']), type='candle', style='charles', ax=ax)
x = len(data) // 2 - len(data) * 0.1
if pat.inverted:
y = pat.head_p + pat.head_height * 1.25
else:
y = pat.head_p - pat.head_height * 1.25
ax.text(x,y, f"BTC-USDT 1H ({idx[pat.start_i].strftime('%Y-%m-%d %H:%M')} - {idx[pat.break_i].strftime('%Y-%m-%d %H:%M')})", color='white', fontsize='xx-large')
plt.show()
if __name__ == '__main__':
data = pd.read_csv('BTCUSDT3600.csv')
data['date'] = data['date'].astype('datetime64[s]')
data = data.set_index('date')
data = np.log(data)
dat_slice = data['close'].to_numpy()
hs_patterns, ihs_patterns = find_hs_patterns(dat_slice, 6, early_find=False)
hs_df = pd.DataFrame()
ihs_df = pd.DataFrame()
# Load pattern attributes into dataframe
for i, hs in enumerate(hs_patterns):
hs_df.loc[i, 'head_width'] = hs.head_width
hs_df.loc[i, 'head_height'] = hs.head_height
hs_df.loc[i, 'r2'] = hs.pattern_r2
hs_df.loc[i, 'neck_slope'] = hs.neck_slope
hp = int(hs.head_width)
if hs.break_i + hp >= len(data):
hs_df.loc[i, 'hold_return'] = np.nan
else:
ret = -1 * (dat_slice[hs.break_i + hp] - dat_slice[hs.break_i])
hs_df.loc[i, 'hold_return'] = ret
hs_df.loc[i, 'stop_return'] = get_pattern_return(dat_slice, hs)
# Load pattern attributes into dataframe
for i, hs in enumerate(ihs_patterns):
ihs_df.loc[i, 'head_width'] = hs.head_width
ihs_df.loc[i, 'head_height'] = hs.head_height
ihs_df.loc[i, 'r2'] = hs.pattern_r2
ihs_df.loc[i, 'neck_slope'] = hs.neck_slope
hp = int(hs.head_width)
if hs.break_i + hp >= len(data):
ihs_df.loc[i, 'hold_return'] = np.nan
else:
ret = dat_slice[hs.break_i + hp] - dat_slice[hs.break_i]
ihs_df.loc[i, 'hold_return'] = ret
ihs_df.loc[i, 'stop_return'] = get_pattern_return(dat_slice, hs)
plot_hs(data, hs_patterns[0], pad=0)