-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathtest_hs_patterns.py
433 lines (369 loc) · 16 KB
/
test_hs_patterns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mplfinance as mpf
from head_shoulders import find_hs_patterns, get_pattern_return
data = pd.read_csv('BTCUSDT3600.csv')
data['date'] = data['date'].astype('datetime64[s]')
data = data.set_index('date')
data = np.log(data)
dat_slice = data['close'].to_numpy()
orders = list(range(1, 49))
ihs_count = []
ihs_early_count = []
hs_count = []
hs_early_count = []
ihs_wr = []
ihs_early_wr = []
hs_wr = []
hs_early_wr = []
ihs_wr_stop = []
ihs_early_wr_stop = []
hs_wr_stop = []
hs_early_wr_stop = []
ihs_avg = []
ihs_early_avg = []
hs_avg = []
hs_early_avg = []
ihs_avg_stop = []
ihs_early_avg_stop = []
hs_avg_stop = []
hs_early_avg_stop = []
ihs_total_ret = []
ihs_early_total_ret = []
hs_total_ret = []
hs_early_total_ret = []
ihs_total_ret_stop = []
ihs_early_total_ret_stop = []
hs_total_ret_stop = []
hs_early_total_ret_stop = []
for order in orders:
hs_patterns, ihs_patterns = find_hs_patterns(dat_slice, order, False)
hs_patterns_early, ihs_patterns_early = find_hs_patterns(dat_slice, order, True)
hs_df = pd.DataFrame()
ihs_df = pd.DataFrame()
hs_early_df = pd.DataFrame()
ihs_early_df = pd.DataFrame()
# Load pattern attributes into dataframe
for i, hs in enumerate(hs_patterns):
hs_df.loc[i, 'head_width'] = hs.head_width
hs_df.loc[i, 'head_height'] = hs.head_height
hs_df.loc[i, 'r2'] = hs.pattern_r2
hs_df.loc[i, 'neck_slope'] = hs.neck_slope
hp = int(hs.head_width)
if hs.break_i + hp >= len(data):
hs_df.loc[i, 'hold_return'] = np.nan
else:
ret = -1 * (dat_slice[hs.break_i + hp] - dat_slice[hs.break_i])
hs_df.loc[i, 'hold_return'] = ret
hs_df.loc[i, 'stop_return'] = get_pattern_return(dat_slice, hs)
for i, hs in enumerate(ihs_patterns):
ihs_df.loc[i, 'head_width'] = hs.head_width
ihs_df.loc[i, 'head_height'] = hs.head_height
ihs_df.loc[i, 'r2'] = hs.pattern_r2
ihs_df.loc[i, 'neck_slope'] = hs.neck_slope
hp = int(hs.head_width)
if hs.break_i + hp >= len(data):
ihs_df.loc[i, 'hold_return'] = np.nan
else:
ret = dat_slice[hs.break_i + hp] - dat_slice[hs.break_i]
ihs_df.loc[i, 'hold_return'] = ret
ihs_df.loc[i, 'stop_return'] = get_pattern_return(dat_slice, hs)
for i, hs_early in enumerate(hs_patterns_early):
hs_early_df.loc[i, 'head_width'] = hs_early.head_width
hs_early_df.loc[i, 'head_height'] = hs_early.head_height
hs_early_df.loc[i, 'r2'] = hs_early.pattern_r2
hs_early_df.loc[i, 'neck_slope'] = hs_early.neck_slope
hp = int(hs_early.head_width)
if hs_early.break_i + hp >= len(data):
hs_early_df.loc[i, 'hold_return'] = np.nan
else:
ret = -1 * (dat_slice[hs_early.break_i + hp] - dat_slice[hs_early.break_i])
hs_early_df.loc[i, 'hold_return'] = ret
hs_early_df.loc[i, 'stop_return'] = get_pattern_return(dat_slice, hs_early)
# Load pattern attributes into dataframe
for i, hs_early in enumerate(ihs_patterns_early):
ihs_early_df.loc[i, 'head_width'] = hs_early.head_width
ihs_early_df.loc[i, 'head_height'] = hs_early.head_height
ihs_early_df.loc[i, 'r2'] = hs_early.pattern_r2
ihs_early_df.loc[i, 'neck_slope'] = hs_early.neck_slope
hp = int(hs_early.head_width)
if hs_early.break_i + hp >= len(data):
ihs_early_df.loc[i, 'hold_return'] = np.nan
else:
ret = dat_slice[hs_early.break_i + hp] - dat_slice[hs_early.break_i]
ihs_early_df.loc[i, 'hold_return'] = ret
ihs_early_df.loc[i, 'stop_return'] = get_pattern_return(dat_slice, hs_early)
if len(ihs_df) > 0:
ihs_count.append(len(ihs_df))
ihs_avg.append(ihs_df['hold_return'].mean())
ihs_wr.append(len(ihs_df[ihs_df['hold_return'] > 0]) / len(ihs_df))
ihs_total_ret.append(ihs_df['hold_return'].sum())
ihs_avg_stop.append(ihs_df['stop_return'].mean())
ihs_wr_stop.append(len(ihs_df[ihs_df['stop_return'] > 0]) / len(ihs_df))
ihs_total_ret_stop.append(ihs_df['stop_return'].sum())
else:
ihs_count.append(0)
ihs_avg.append(np.nan)
ihs_wr.append(np.nan)
ihs_total_ret.append(0)
ihs_avg_stop.append(np.nan)
ihs_wr_stop.append(np.nan)
ihs_total_ret_stop.append(0)
if len(hs_df) > 0:
hs_count.append(len(hs_df))
hs_avg.append(hs_df['hold_return'].mean())
hs_wr.append(len(hs_df[hs_df['hold_return'] > 0]) / len(hs_df))
hs_total_ret.append(hs_df['hold_return'].sum())
hs_avg_stop.append(hs_df['stop_return'].mean())
hs_wr_stop.append(len(hs_df[hs_df['stop_return'] > 0]) / len(hs_df))
hs_total_ret_stop.append(hs_df['stop_return'].sum())
else:
hs_count.append(0)
hs_avg.append(np.nan)
hs_wr.append(np.nan)
hs_total_ret.append(0)
hs_avg_stop.append(np.nan)
hs_wr_stop.append(np.nan)
hs_total_ret_stop.append(0)
if len(ihs_early_df) > 0:
ihs_early_count.append(len(ihs_early_df))
ihs_early_avg.append(ihs_early_df['hold_return'].mean())
ihs_early_wr.append(len(ihs_early_df[ihs_early_df['hold_return'] > 0]) / len(ihs_early_df))
ihs_early_total_ret.append(ihs_early_df['hold_return'].sum())
ihs_early_avg_stop.append(ihs_early_df['stop_return'].mean())
ihs_early_wr_stop.append(len(ihs_early_df[ihs_early_df['stop_return'] > 0]) / len(ihs_early_df))
ihs_early_total_ret_stop.append(ihs_early_df['stop_return'].sum())
else:
ihs_early_count.append(0)
ihs_early_avg.append(np.nan)
ihs_early_wr.append(np.nan)
ihs_early_total_ret.append(0)
ihs_early_avg_stop.append(np.nan)
ihs_early_wr_stop.append(np.nan)
ihs_early_total_ret_stop.append(0)
if len(hs_early_df) > 0:
hs_early_count.append(len(hs_early_df))
hs_early_avg.append(hs_early_df['hold_return'].mean())
hs_early_wr.append(len(hs_early_df[hs_early_df['hold_return'] > 0]) / len(hs_early_df))
hs_early_total_ret.append(hs_early_df['hold_return'].sum())
hs_early_avg_stop.append(hs_early_df['stop_return'].mean())
hs_early_wr_stop.append(len(hs_early_df[hs_early_df['stop_return'] > 0]) / len(hs_early_df))
hs_early_total_ret_stop.append(hs_early_df['stop_return'].sum())
else:
hs_early_count.append(0)
hs_early_avg.append(np.nan)
hs_early_wr.append(np.nan)
hs_early_total_ret.append(0)
hs_early_avg_stop.append(np.nan)
hs_early_wr_stop.append(np.nan)
hs_early_total_ret_stop.append(0)
results_df = pd.DataFrame(index=orders)
results_df['ihs_count'] = ihs_count
results_df['ihs_avg'] = ihs_avg
results_df['ihs_wr'] = ihs_wr
results_df['ihs_total'] = ihs_total_ret
results_df['ihs_avg_stop'] = ihs_avg_stop
results_df['ihs_wr_stop'] = ihs_wr_stop
results_df['ihs_total_stop'] = ihs_total_ret_stop
results_df['hs_count'] = hs_count
results_df['hs_avg'] = hs_avg
results_df['hs_wr'] = hs_wr
results_df['hs_total'] = hs_total_ret
results_df['hs_avg_stop'] = hs_avg_stop
results_df['hs_wr_stop'] = hs_wr_stop
results_df['hs_total_stop'] = hs_total_ret_stop
results_df['ihs_early_count'] = ihs_early_count
results_df['ihs_early_avg'] = ihs_early_avg
results_df['ihs_early_wr'] = ihs_early_wr
results_df['ihs_early_total'] = ihs_early_total_ret
results_df['ihs_early_avg_stop'] = ihs_early_avg_stop
results_df['ihs_early_wr_stop'] = ihs_early_wr_stop
results_df['ihs_early_total_stop'] = ihs_early_total_ret_stop
results_df['hs_early_count'] = hs_early_count
results_df['hs_early_avg'] = hs_early_avg
results_df['hs_early_wr'] = hs_early_wr
results_df['hs_early_total'] = hs_early_total_ret
results_df['hs_early_avg_stop'] = hs_early_avg_stop
results_df['hs_early_wr_stop'] = hs_early_wr_stop
results_df['hs_early_total_stop'] = hs_early_total_ret_stop
# Plot Hold Period Performance
plt.style.use('dark_background')
fig, ax = plt.subplots(2, 2)
fig.suptitle("IH&S Performance Hold Period", fontsize=20)
results_df['ihs_count'].plot.bar(ax=ax[0,0])
results_df['ihs_avg'].plot.bar(ax=ax[0,1], color='yellow')
results_df['ihs_total'].plot.bar(ax=ax[1,0], color='green')
results_df['ihs_wr'].plot.bar(ax=ax[1,1], color='orange')
ax[0,1].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,0].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,1].hlines(0.5, xmin=-1, xmax=len(orders), color='white')
ax[0,0].set_title('Number of Patterns Found')
ax[0,0].set_xlabel('Order Parameter')
ax[0,0].set_ylabel('Number of Patterns')
ax[0,1].set_title('Average Pattern Return')
ax[0,1].set_xlabel('Order Parameter')
ax[0,1].set_ylabel('Average Log Return')
ax[1,0].set_title('Sum of Returns')
ax[1,0].set_xlabel('Order Parameter')
ax[1,0].set_ylabel('Total Log Return')
ax[1,1].set_title('Win Rate')
ax[1,1].set_xlabel('Order Parameter')
ax[1,1].set_ylabel('Win Rate Percentage')
plt.show()
fig, ax = plt.subplots(2, 2)
fig.suptitle("H&S Performance Hold Period", fontsize=20)
results_df['hs_count'].plot.bar(ax=ax[0,0])
results_df['hs_avg'].plot.bar(ax=ax[0,1], color='yellow')
results_df['hs_total'].plot.bar(ax=ax[1,0], color='green')
results_df['hs_wr'].plot.bar(ax=ax[1,1], color='orange')
ax[0,1].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,0].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,1].hlines(0.5, xmin=-1, xmax=len(orders), color='white')
ax[0,0].set_title('Number of Patterns Found')
ax[0,0].set_xlabel('Order Parameter')
ax[0,0].set_ylabel('Number of Patterns')
ax[0,1].set_title('Average Pattern Return')
ax[0,1].set_xlabel('Order Parameter')
ax[0,1].set_ylabel('Average Log Return')
ax[1,0].set_title('Sum of Returns')
ax[1,0].set_xlabel('Order Parameter')
ax[1,0].set_ylabel('Total Log Return')
ax[1,1].set_title('Win Rate')
ax[1,1].set_xlabel('Order Parameter')
ax[1,1].set_ylabel('Win Rate Percentage')
plt.show()
fig, ax = plt.subplots(2, 2)
fig.suptitle("IH&S Early Performance Hold Period", fontsize=20)
results_df['ihs_early_count'].plot.bar(ax=ax[0,0])
results_df['ihs_early_avg'].plot.bar(ax=ax[0,1], color='yellow')
results_df['ihs_early_total'].plot.bar(ax=ax[1,0], color='green')
results_df['ihs_early_wr'].plot.bar(ax=ax[1,1], color='orange')
ax[0,1].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,0].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,1].hlines(0.5, xmin=-1, xmax=len(orders), color='white')
ax[0,0].set_title('Number of Patterns Found')
ax[0,0].set_xlabel('Order Parameter')
ax[0,0].set_ylabel('Number of Patterns')
ax[0,1].set_title('Average Pattern Return')
ax[0,1].set_xlabel('Order Parameter')
ax[0,1].set_ylabel('Average Log Return')
ax[1,0].set_title('Sum of Returns')
ax[1,0].set_xlabel('Order Parameter')
ax[1,0].set_ylabel('Total Log Return')
ax[1,1].set_title('Win Rate')
ax[1,1].set_xlabel('Order Parameter')
ax[1,1].set_ylabel('Win Rate Percentage')
plt.show()
fig, ax = plt.subplots(2, 2)
fig.suptitle("HS Early Performance Hold Period", fontsize=20)
results_df['hs_early_count'].plot.bar(ax=ax[0,0])
results_df['hs_early_avg'].plot.bar(ax=ax[0,1], color='yellow')
results_df['hs_early_total'].plot.bar(ax=ax[1,0], color='green')
results_df['hs_early_wr'].plot.bar(ax=ax[1,1], color='orange')
ax[0,1].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,0].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,1].hlines(0.5, xmin=-1, xmax=len(orders), color='white')
ax[0,0].set_title('Number of Patterns Found')
ax[0,0].set_xlabel('Order Parameter')
ax[0,0].set_ylabel('Number of Patterns')
ax[0,1].set_title('Average Pattern Return')
ax[0,1].set_xlabel('Order Parameter')
ax[0,1].set_ylabel('Average Log Return')
ax[1,0].set_title('Sum of Returns')
ax[1,0].set_xlabel('Order Parameter')
ax[1,0].set_ylabel('Total Log Return')
ax[1,1].set_title('Win Rate')
ax[1,1].set_xlabel('Order Parameter')
ax[1,1].set_ylabel('Win Rate Percentage')
plt.show()
# Plot Stop Rule Performance
plt.style.use('dark_background')
fig, ax = plt.subplots(2, 2)
fig.suptitle("IH&S Performance Stop Rule", fontsize=20)
results_df['ihs_count'].plot.bar(ax=ax[0,0])
results_df['ihs_avg_stop'].plot.bar(ax=ax[0,1], color='yellow')
results_df['ihs_total_stop'].plot.bar(ax=ax[1,0], color='green')
results_df['ihs_wr_stop'].plot.bar(ax=ax[1,1], color='orange')
ax[0,1].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,0].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,1].hlines(0.5, xmin=-1, xmax=len(orders), color='white')
ax[0,0].set_title('Number of Patterns Found')
ax[0,0].set_xlabel('Order Parameter')
ax[0,0].set_ylabel('Number of Patterns')
ax[0,1].set_title('Average Pattern Return')
ax[0,1].set_xlabel('Order Parameter')
ax[0,1].set_ylabel('Average Log Return')
ax[1,0].set_title('Sum of Returns')
ax[1,0].set_xlabel('Order Parameter')
ax[1,0].set_ylabel('Total Log Return')
ax[1,1].set_title('Win Rate')
ax[1,1].set_xlabel('Order Parameter')
ax[1,1].set_ylabel('Win Rate Percentage')
plt.show()
fig, ax = plt.subplots(2, 2)
fig.suptitle("H&S Performance Stop Rule", fontsize=20)
results_df['hs_count'].plot.bar(ax=ax[0,0])
results_df['hs_avg_stop'].plot.bar(ax=ax[0,1], color='yellow')
results_df['hs_total_stop'].plot.bar(ax=ax[1,0], color='green')
results_df['hs_wr_stop'].plot.bar(ax=ax[1,1], color='orange')
ax[0,1].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,0].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,1].hlines(0.5, xmin=-1, xmax=len(orders), color='white')
ax[0,0].set_title('Number of Patterns Found')
ax[0,0].set_xlabel('Order Parameter')
ax[0,0].set_ylabel('Number of Patterns')
ax[0,1].set_title('Average Pattern Return')
ax[0,1].set_xlabel('Order Parameter')
ax[0,1].set_ylabel('Average Log Return')
ax[1,0].set_title('Sum of Returns')
ax[1,0].set_xlabel('Order Parameter')
ax[1,0].set_ylabel('Total Log Return')
ax[1,1].set_title('Win Rate')
ax[1,1].set_xlabel('Order Parameter')
ax[1,1].set_ylabel('Win Rate Percentage')
plt.show()
fig, ax = plt.subplots(2, 2)
fig.suptitle("IH&S Early Performance Stop Rule", fontsize=20)
results_df['ihs_early_count'].plot.bar(ax=ax[0,0])
results_df['ihs_early_avg_stop'].plot.bar(ax=ax[0,1], color='yellow')
results_df['ihs_early_total_stop'].plot.bar(ax=ax[1,0], color='green')
results_df['ihs_early_wr_stop'].plot.bar(ax=ax[1,1], color='orange')
ax[0,1].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,0].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,1].hlines(0.5, xmin=-1, xmax=len(orders), color='white')
ax[0,0].set_title('Number of Patterns Found')
ax[0,0].set_xlabel('Order Parameter')
ax[0,0].set_ylabel('Number of Patterns')
ax[0,1].set_title('Average Pattern Return')
ax[0,1].set_xlabel('Order Parameter')
ax[0,1].set_ylabel('Average Log Return')
ax[1,0].set_title('Sum of Returns')
ax[1,0].set_xlabel('Order Parameter')
ax[1,0].set_ylabel('Total Log Return')
ax[1,1].set_title('Win Rate')
ax[1,1].set_xlabel('Order Parameter')
ax[1,1].set_ylabel('Win Rate Percentage')
plt.show()
fig, ax = plt.subplots(2, 2)
fig.suptitle("HS Early Performance Stop Rule", fontsize=20)
results_df['hs_early_count'].plot.bar(ax=ax[0,0])
results_df['hs_early_avg_stop'].plot.bar(ax=ax[0,1], color='yellow')
results_df['hs_early_total_stop'].plot.bar(ax=ax[1,0], color='green')
results_df['hs_early_wr_stop'].plot.bar(ax=ax[1,1], color='orange')
ax[0,1].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,0].hlines(0.0, xmin=-1, xmax=len(orders), color='white')
ax[1,1].hlines(0.5, xmin=-1, xmax=len(orders), color='white')
ax[0,0].set_title('Number of Patterns Found')
ax[0,0].set_xlabel('Order Parameter')
ax[0,0].set_ylabel('Number of Patterns')
ax[0,1].set_title('Average Pattern Return')
ax[0,1].set_xlabel('Order Parameter')
ax[0,1].set_ylabel('Average Log Return')
ax[1,0].set_title('Sum of Returns')
ax[1,0].set_xlabel('Order Parameter')
ax[1,0].set_ylabel('Total Log Return')
ax[1,1].set_title('Win Rate')
ax[1,1].set_xlabel('Order Parameter')
ax[1,1].set_ylabel('Win Rate Percentage')
plt.show()