-
Notifications
You must be signed in to change notification settings - Fork 49
435 lines (380 loc) · 19 KB
/
cluster-faces-test.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
name: Cluster-faces command test
on:
pull_request:
paths:
- 'lib/**'
- 'src/**'
push:
branches:
- master
paths:
- 'lib/**'
- 'src/**'
env:
APP_NAME: recognize
jobs:
php:
runs-on: ubuntu-20.04
strategy:
# do not stop on another job's failure
fail-fast: false
matrix:
php-versions: ['8.2']
databases: ['sqlite']
server-versions: ['master']
pure-js-mode: ['false']
name: Test cluster-faces command on ${{ matrix.server-versions }} wasm:${{ matrix.pure-js-mode }}
env:
MYSQL_PORT: 4444
PGSQL_PORT: 4445
services:
mysql:
image: mariadb:10.5
ports:
- 4444:3306/tcp
env:
MYSQL_ROOT_PASSWORD: rootpassword
options: --health-cmd="mysqladmin ping" --health-interval 5s --health-timeout 2s --health-retries 5
postgres:
image: postgres
ports:
- 4445:5432/tcp
env:
POSTGRES_USER: root
POSTGRES_PASSWORD: rootpassword
POSTGRES_DB: nextcloud
options: --health-cmd pg_isready --health-interval 5s --health-timeout 2s --health-retries 5
steps:
- name: Checkout server
uses: actions/checkout@v2
with:
repository: nextcloud/server
ref: ${{ matrix.server-versions }}
- name: Checkout submodules
shell: bash
run: |
auth_header="$(git config --local --get http.https://github.com/.extraheader)"
git submodule sync --recursive
git -c "http.extraheader=$auth_header" -c protocol.version=2 submodule update --init --force --recursive --depth=1
- name: install ssl-cert
if: env.ACT # Skip this on normal GitHub Actions
run: sudo apt update && sudo apt install -y ssl-cert
- name: Set up php ${{ matrix.php-versions }}
uses: shivammathur/setup-php@v2
with:
php-version: ${{ matrix.php-versions }}
tools: phpunit
extensions: mbstring, iconv, fileinfo, intl, sqlite, pdo_mysql, pdo_sqlite, pgsql, pdo_pgsql, gd, zip
- name: Checkout app
uses: actions/checkout@v2
with:
path: apps/${{ env.APP_NAME }}
- name: Read package.json node and npm engines version
uses: skjnldsv/[email protected]
id: versions
with:
path: apps/${{ env.APP_NAME }}
fallbackNode: '^12'
fallbackNpm: '^6'
- name: Set up node ${{ steps.versions.outputs.nodeVersion }}
uses: actions/setup-node@v2
with:
node-version: ${{ steps.versions.outputs.nodeVersion }}
- name: Set up npm ${{ steps.versions.outputs.npmVersion }}
run: npm i -g npm@"${{ steps.versions.outputs.npmVersion }}"
- name: install make wget unzip
if: env.ACT # Skip this on normal GitHub Actions
run: sudo apt update && sudo apt install -y make wget unzip
- name: Install app
working-directory: apps/${{ env.APP_NAME }}
run: |
composer install --no-dev
make all
make remove-binaries
make remove-devdeps
- name: Set up Nextcloud and install app
if: ${{ matrix.databases != 'pgsql'}}
run: |
sleep 25
mkdir data
./occ maintenance:install --verbose --database=${{ matrix.databases }} --database-name=nextcloud --database-host=127.0.0.1 --database-port=$MYSQL_PORT --database-user=root --database-pass=rootpassword --admin-user admin --admin-pass password
./occ app:enable -vvv -f ${{ env.APP_NAME }}
php -S localhost:8080 &
- name: Set up Nextcloud and install app
if: ${{ matrix.databases == 'pgsql'}}
run: |
sleep 25
mkdir data
./occ maintenance:install --verbose --database=${{ matrix.databases }} --database-name=nextcloud --database-host=127.0.0.1 --database-port=$PGSQL_PORT --database-user=root --database-pass=rootpassword --admin-user admin --admin-pass password
./occ app:enable -vvv -f ${{ env.APP_NAME }}
php -S localhost:8080 &
- name: Install
run: |
./occ app:enable -vvv ${{ env.APP_NAME }}
- name: Remove unnecessary models to make space
run: |
rm -rf apps/recognize/models
- uses: actions/cache/restore@v3
id: photos-cache
with:
path: data/admin/files/
key: https://cloud.marcelklehr.de/s/PkNYbmKnwMiQMFD/download/IMDb-Face.zip
- name: Upload photos
if: steps.photos-cache.outputs.cache-hit != 'true'
run: |
mkdir -p data/admin/files/
cd data/admin/files
wget https://cloud.marcelklehr.de/s/PkNYbmKnwMiQMFD/download/IMDb-Face.zip
unzip IMDb-Face.zip
rm IMDb-Face.zip
- uses: actions/cache/save@v3
with:
path: data/admin/files/
key: https://cloud.marcelklehr.de/s/PkNYbmKnwMiQMFD/download/IMDb-Face.zip
- name: Set config
run: |
./occ config:app:set --value ${{ matrix.pure-js-mode }} recognize tensorflow.purejs
./occ config:app:set --value true recognize faces.enabled
# only use one core. GH actions has 2
./occ config:app:set --value 1 recognize tensorflow.cores
- uses: actions/cache/restore@v3
id: db-cache
with:
path: data/nextcloud.db
key: ${{ runner.os }}-${{ matrix.server-versions }}-${{ hashFiles('data/admin/files/**', 'apps/recognize/src/classifier_faces.js', 'apps/recognize/lib/Classifiers/Classifier.php', 'apps/recognize/lib/Classifiers/Images/ClusteringFaceClassifier.php') }}-${{ matrix.pure-js-mode }}
- name: Run classifier
if: steps.db-cache.outputs.cache-hit != 'true'
env:
GITHUB_REF: ${{ github.ref }}
run: |
./occ files:scan admin
./occ recognize:classify
- uses: actions/cache/save@v3
with:
path: data/nextcloud.db
key: ${{ steps.db-cache.outputs.cache-primary-key }}
- name: Reduce space
run: |
for dirname in data/admin/files/IMDb-Face/*; do truncate -s 0 "${dirname}/*"; done
- name: install sqlite3
if: env.ACT # Skip this on normal GitHub Actions
run: sudo apt update && sudo apt install -y sqlite3
- name: Create detection summary
run: |
sqlite3 data/nextcloud.db "select x, y, path from oc_recognize_face_detections d LEFT JOIN oc_filecache c ON c.fileid = d.file_id where user_id = 'admin' ORDER BY path;" > out.txt
- uses: actions/cache/restore@v3
id: clustering-cache
with:
path: out.json
key: ${{ runner.os }}-${{ hashFiles('out.txt', 'apps/recognize/src/classifier_faces.js', 'apps/recognize/lib/Classifiers/Classifier.php', 'apps/recognize/lib/Classifiers/Images/ClusteringFaceClassifier.php', 'apps/recognize/lib/Clustering/**', 'apps/recognize/lib/Dav/**', 'apps/recognize/lib/Service/FaceClusterAnalyzer.php', 'apps/recognize/lib/Command/ClusterFaces.php') }}-${{ matrix.pure-js-mode }}
- name: Run clustering
if: steps.clustering-cache.outputs.cache-hit != 'true'
run: |
./occ recognize:cluster-faces -b 10000
./occ recognize:cluster-faces -b 10000
./occ recognize:cluster-faces -b 10000
./occ recognize:cluster-faces -b 10000
./occ recognize:cluster-faces -b 10000
./occ recognize:cluster-faces -b 10000
- name: install python3 python3-pip jq curl
if: steps.clustering-cache.outputs.cache-hit != 'true' && env.ACT # Skip this on normal GitHub Actions
run: sudo apt update && sudo apt install -y python3 python3-pip jq curl
- name: Install xq
if: steps.clustering-cache.outputs.cache-hit != 'true'
run: |
pip install yq
- name: Download face assignments
if: steps.clustering-cache.outputs.cache-hit != 'true'
run: |
curl -u 'admin:password' --request PROPFIND 'http://localhost:8080/remote.php/dav/recognize/admin/faces/' --header 'Depth: 2' --data '<?xml version="1.0"?>
<d:propfind xmlns:d="DAV:"
xmlns:oc="http://owncloud.org/ns"
xmlns:nc="http://nextcloud.org/ns"
xmlns:ocs="http://open-collaboration-services.org/ns">
<d:prop>
<d:getcontentlength />
<d:getcontenttype />
<d:getetag />
<d:getlastmodified />
<d:resourcetype />
<nc:face-detections />
<nc:file-metadata-size />
<nc:has-preview />
<nc:realpath />
<oc:favorite />
<oc:fileid />
<oc:permissions />
<nc:nbItems />
</d:prop>
</d:propfind>' > out.xml
cat out.xml
- name: Parse face assignments
if: steps.clustering-cache.outputs.cache-hit != 'true'
run: |
cat out.xml | xq '.["d:multistatus"]["d:response"] | map(select(.["d:href"] | test("faces/.+?/.+?"))) | map({"href": .["d:href"], "realpath": .["d:propstat"][0]["d:prop"]["nc:realpath"], "face-detections": .["d:propstat"][0]["d:prop"]["nc:face-detections"] | fromjson | map({userId, x, y, height, width, clusterId}) })' > out.json
cat out.json
- uses: actions/cache/save@v3
with:
path: out.json
key: ${{ steps.clustering-cache.outputs.cache-primary-key }}
- name: Download IMDb-Face.csv
working-directory: apps/${{ env.APP_NAME }}/tests/res
run: |
wget https://cloud.marcelklehr.de/s/ZKe7MY7gZRRxBPq/download/IMDb-Face-csv.zip
unzip IMDb-Face-csv.zip
rm IMDb-Face-csv.zip
- name: Analyse face assignments
run: |
node -e "
const COLUMN_NAME = 0
const COLUMN_URL = 5
const COLUMN_RECT = 3
const COLUMN_DIMS = 4
const csv = fs.readFileSync(__dirname + '/apps/recognize/tests/res/IMDb-Face.csv')
.toString('utf8')
.split('\n')
.map(line => line.split(','))
// remove csv header
csv.shift()
const names = [...new Set(csv.map(image => image[COLUMN_NAME])).values()]
const selectedNames = names.slice(0, 2000)
const limitedCsv = selectedNames.flatMap(name => {
return csv.filter(line => line[COLUMN_NAME] === name)
})
const allDetections = fs.readFileSync(__dirname + '/out.txt').toString('utf8').trim().split('\n').map(line => line.split('|'))
const json = require(__dirname + '/out.json');
const facesByCluster = json
.reduce((acc, face) => {
const clusterId = parseInt(face.href.split('/')[6]);
acc[clusterId] = [...(acc[clusterId] ?? []), face.realpath.split('/')[4]];
return acc
}, {});
const targetFaces = json
.filter(face => {
return limitedCsv
.some(entry => {
if (entry[COLUMN_NAME] === face.realpath.split('/')[4] && entry[COLUMN_URL].split('/').pop() === face.realpath.split('/').pop()) {
let dims = entry[COLUMN_DIMS].split(' ').map(i => parseInt(i))
dims = {x: dims[1], y: dims[0]}
const rect = entry[COLUMN_RECT].split(' ').map(i => parseInt(i))
return Math.abs(face['face-detections'][0].x - rect[0] / dims.x) < 0.05 && Math.abs(face['face-detections'][0].y - rect[1] / dims.y) < 0.05
}
return false
})
})
const targetFacesPerIdentity = targetFaces.reduce((acc, face) => {
const name = face.realpath.split('/')[4]
acc[name] = acc[name] ?? []
acc[name].push(face)
return acc
},{})
const targetFacesByCluster = targetFaces
.reduce((acc, face) => {
const clusterId = parseInt(face.href.split('/')[6]);
acc[clusterId] = [...(acc[clusterId] ?? []), face.realpath.split('/')[4]];
return acc
}, {});
console.log(facesByCluster);
console.log(targetFacesByCluster);
const clusterTargetAccuracies = Object.entries(targetFacesByCluster)
.filter(([clusterId, names]) => names.length > 1)
.map(([clusterId, names]) =>
[...new Set(names).values()]
.map(name1 =>
names.filter(name2 => name1 === name2).length
).sort().reverse()[0] / names.length
);
const clusterAccuracies = Object.entries(facesByCluster)
.map(([clusterId, names]) =>
[...new Set(names).values()]
.map(name1 =>
names.filter(name2 => name1 === name2).length
).sort().reverse()[0] / names.length
);
const clusteredFaces = Object.entries(facesByCluster)
.map(([clusterId, names]) => names.length)
.reduce((acc, val) => acc+val, 0)
const clusteredTargetFaces = Object.entries(targetFacesByCluster)
.map(([clusterId, names]) => names.length)
.reduce((acc, val) => acc+val, 0)
const clusteredTargetFacesByIdentity = Object.entries(targetFacesByCluster)
.map(([clusterId, names]) =>
[...new Set(names).values()]
.map(name1 =>
[name1, names.filter(name2 => name1 === name2).length]
).sort(([name1, size1], [name2, size2]) => size1 - size2).reverse()[0]
)
.filter(([name,size]) => size > 1)
.reduce((acc, [name, size]) => {
acc[name] = (acc[name] ?? 0) + size
return acc
}, Object.fromEntries(Object.entries(targetFacesPerIdentity).map(([key]) => [key, 0])))
console.log(targetFacesPerIdentity)
console.log(clusteredTargetFacesByIdentity)
const averageTargetFacesPerIdentity = Object.entries(targetFacesPerIdentity).reduce((acc, [name, detections]) => acc+detections.length, 0) / Object.entries(targetFacesPerIdentity).length
const averageClusteredTargetFacesByIdentity = Object.entries(clusteredTargetFacesByIdentity).reduce((acc, [name, size]) => acc+size, 0) / Object.entries(clusteredTargetFacesByIdentity).length
const clusteredTargetFacesByIdentityRate = Object.entries(clusteredTargetFacesByIdentity)
.reduce((acc, [name, size]) => acc + size / targetFacesPerIdentity[name].length, 0) / Object.entries(clusteredTargetFacesByIdentity).length
const identitiesWithPhotos = $(find data/admin/files/IMDb-Face -type d ! -empty | wc -l)
const identitiesWithDetections = Object.entries(targetFacesPerIdentity).length
const identitiesWithEnoughDetections = Object.entries(targetFacesPerIdentity).filter(([name, detections]) => detections.length > 1).length
const identitiesWithClusters = Object.entries(clusteredTargetFacesByIdentity).filter(([name, size]) => size > 1).length
const identitiesWithClustersRate = identitiesWithClusters / identitiesWithEnoughDetections
const detectedFaces = $(sqlite3 data/nextcloud.db "select count(*) from oc_recognize_face_detections where user_id = 'admin';")
const detectedTargetFaces = allDetections.filter(detection => {
if(detection.length < 3) return false
const x = Number(detection[0])
const y = Number(detection[1])
const path = detection[2]
return limitedCsv
.some(entry => {
if (entry[COLUMN_NAME] === path.split('/')[2] && entry[COLUMN_URL].split('/').pop().split('.jpg')[0] === path.split('/').pop().split('.jpg')[0]) {
let dims = entry[COLUMN_DIMS].split(' ').map(i => parseInt(i))
dims = {x: dims[1], y: dims[0]}
const rect = entry[COLUMN_RECT].split(' ').map(i => parseInt(i))
return Math.abs(x - rect[0] / dims.x) < 0.05 && Math.abs(y - rect[1] / dims.y) < 0.05
}
return false
})
}).length
const totalPhotos = $(ls data/admin/files/IMDb-Face/* | wc -l)
const detectedFacesRate = detectedFaces / totalPhotos
const clusteredTargetFacesRate = clusteredTargetFaces / detectedTargetFaces
const clusteredFacesRate = clusteredFaces / detectedFaces
const averageClusterAccuracy = clusterAccuracies.reduce((acc, val) => acc+val, 0)/clusterAccuracies.length
const averageClusterTargetAccuracy = clusterTargetAccuracies.reduce((acc, val) => acc+val, 0)/clusterTargetAccuracies.length
const targettedShitClusterRate = clusterTargetAccuracies.filter((val) => val < 0.5).length/clusterTargetAccuracies.length
const shitClusterRate = clusterAccuracies.filter((val) => val < 0.5).length/clusterAccuracies.length
console.log({ clusterAccuracies });
console.log({ clusterTargetAccuracies });
console.log({ totalPhotos });
console.log({ detectedFaces });
console.log({ detectedFacesRate });
console.log({ detectedTargetFaces });
console.log({ clusteredFaces });
console.log({ clusteredFacesRate })
console.log({ clusteredTargetFaces })
console.log({ clusteredTargetFacesRate })
console.log({ averageTargetFacesPerIdentity })
console.log({ averageClusteredTargetFacesByIdentity })
console.log({ clusteredTargetFacesByIdentityRate })
console.log({ identitiesWithPhotos })
console.log({ identitiesWithDetections })
console.log({ identitiesWithEnoughDetections })
console.log({ identitiesWithClusters })
console.log({ identitiesWithClustersRate })
console.log({ shitClusterRate })
console.log({ targettedShitClusterRate })
console.log({ averageClusterAccuracy })
console.log({ averageClusterTargetAccuracy })
console.log({ weightedAccuracy: averageClusterAccuracy * clusteredFacesRate })
console.log({ weightedTargetAccuracy: averageClusterTargetAccuracy * clusteredTargetFacesRate })
const combinedScore = (averageClusterTargetAccuracy * identitiesWithClustersRate * clusteredTargetFacesByIdentityRate * clusteredTargetFacesRate) ** (1/4)
console.log({ combinedScore, minCombinedScore: 0.6 })
if (combinedScore < 0.6 || combinedScore > 1.0) {
console.log('Benchmark result: Bad')
process.exit(1)
} else {
console.log('Benchmark result: Good')
}
"