-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
276 lines (212 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
import torch.nn as nn
from torch.utils.data import random_split, Dataset, DataLoader
from dataset import BilingualDataset, causal_mask
from model import build_transformer
from config import get_config, get_weights_file_path
# Huggingface datasets and tokenizers
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import warnings
# import torchmetrics
import os
from pathlib import Path
def greedy_decode(model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device):
sos_idx = tokenizer_tgt.token_to_id('[SOS]')
eos_idx = tokenizer_tgt.token_to_id('[EOS]')
# Precompute the encoder output and reuse it for every token we get from encoder
encoder_output = model.encode(source, source_mask)
# Initialize the decoder input with sos token
decoder_input = torch.empty((1, 1)).fill_(sos_idx).type_as(source).to(device)
while True:
# batch, ith token of decoder input
if decoder_input.size(1) == max_len:
break
# Buid mask for target (Decoder input)
# dont watch future word
decoder_mask = causal_mask(decoder_input.size(1)).type_as(source_mask).to(device)
out = model.decode(encoder_output, source_mask, decoder_input, decoder_mask)
# get next token
# prob of next token by projection layer, and we want projection of the last token, next token after the last give to encoder
prob = model.project(out[:, -1])
_, next_word = torch.max(prob, dim=1)
decoder_input = torch.cat(
[decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1
)
if next_word == eos_idx:
break
return decoder_input.squeeze(0) # decoder input, remove batch
def run_validation(model, validation_ds, tokenizer_src, tokenizer_tgt, max_len, device, print_msg, global_step, writer, num_examples=2):
model.eval()
count = 0
source_texts = []
expected = []
predicted = []
try:
# get the console window width
with os.popen('stty size', 'r') as console:
_, console_width = console.read().split()
console_width = int(console_width)
except:
# If we can't get the console width, use 80 as default
console_width = 80
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len)
# check that the batch size is 1
assert encoder_input.size(
0) == 1, "Batch size must be 1 for validation"
model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device)
source_text = batch["src_text"][0]
target_text = batch["tgt_text"][0]
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
source_texts.append(source_text)
expected.append(target_text)
predicted.append(model_out_text)
# Print the source, target and model output
# because tqdm so use print_msg
print_msg('-'*console_width)
print_msg(f"{f'SOURCE: ':>12}{source_text}")
print_msg(f"{f'TARGET: ':>12}{target_text}")
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
if count == num_examples:
print_msg('-'*console_width)
break
# if writer:
# # Evaluate the character error rate
# # Compute the char error rate
# metric = torchmetrics.CharErrorRate()
# cer = metric(predicted, expected)
# writer.add_scalar('validation cer', cer, global_step)
# writer.flush()
# # Compute the word error rate
# metric = torchmetrics.WordErrorRate()
# wer = metric(predicted, expected)
# writer.add_scalar('validation wer', wer, global_step)
# writer.flush()
# # Compute the BLEU metric
# metric = torchmetrics.BLEUScore()
# bleu = metric(predicted, expected)
# writer.add_scalar('validation BLEU', bleu, global_step)
# writer.flush()
def get_or_build_tokenizer(config, ds, lang):
tokenizer_path = Path(config['tokenizer_file'].format(lang))
if not Path.exists(tokenizer_path):
# Most code taken from: https://huggingface.co/docs/tokenizers/quicktour
tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()
trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2)
tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer)
tokenizer.save(str(tokenizer_path))
else:
tokenizer = Tokenizer.from_file(str(tokenizer_path))
return tokenizer
def get_all_sentences(ds, lang):
for item in ds:
# item -> pair -> lang
yield item['translation'][lang]
def get_ds(config):
ds_raw = load_dataset(f"{config['datasource']}", f"{config['lang_src']}-{config['lang_tgt']}", split='train')
# Build tokenizers
tokenizer_src = get_or_build_tokenizer(config, ds_raw, config['lang_src'])
tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config['lang_tgt'])
train_ds_size = int(0.9 * len(ds_raw))
val_ds_size = len(ds_raw) - train_ds_size
train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
# Find the maximum length of each sentence in the source and target sentence
max_len_src = 0
max_len_tgt = 0
for item in ds_raw:
src_ids = tokenizer_src.encode(item['translation'][config['lang_src']]).ids
tgt_ids = tokenizer_tgt.encode(item['translation'][config['lang_tgt']]).ids
max_len_src = max(max_len_src, len(src_ids))
max_len_tgt = max(max_len_tgt, len(tgt_ids))
print(f'Max length of source sentence: {max_len_src}')
print(f'Max length of target sentence: {max_len_tgt}')
train_dataloader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True)
val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)
return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt
def get_model(config, vocab_src_len, vocab_tgt_len):
model = build_transformer(vocab_src_len, vocab_tgt_len, config["seq_len"], config['seq_len'], d_model=config['d_model'])
return model
def train_model(config):
device = "cuda" if torch.cuda.is_available() else "mps" if torch.has_mps or torch.backends.mps.is_available() else "cpu"
print("Using device:", device)
if (device == 'cuda'):
print(f"Device name: {torch.cuda.get_device_name(device.index)}")
print(f"Device memory: {torch.cuda.get_device_properties(device.index).total_memory / 1024 ** 3} GB")
else:
print('No cuda')
device = torch.device(device)
# Make sure the weights folder exists
Path(f"{config['datasource']}_{config['model_folder']}").mkdir(parents=True, exist_ok=True)
train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)
# Tensorboard
writer = SummaryWriter(config['experiment_name'])
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9)
initial_epoch = 0
global_step = 0
preload = config['preload']
model_filename = get_weights_file_path(config, preload)
model_filename = False
if model_filename:
print(f'Preloading model {model_filename}')
state = torch.load(model_filename)
model.load_state_dict(state['model_state_dict'])
initial_epoch = state['epoch'] + 1
optimizer.load_state_dict(state['optimizer_state_dict'])
global_step = state['global_step']
else:
print('No model to preload, starting from scratch')
# less ocnfident about decision (label smoothing)
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id('[PAD]'), label_smoothing=0.1).to(device)
for epoch in range(initial_epoch, config['num_epochs']):
torch.cuda.empty_cache()
model.train()
batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}")
for batch in batch_iterator:
encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)
encoder_ouput = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
decoder_output = model.decode(encoder_ouput, encoder_mask, decoder_input, decoder_mask) # (B, seq_len, d_model)
# predicted probabilities over the vocabulary for each position in the output sequence.
proj_output = model.project(decoder_output) # (B, seq_len, tgt_vocab_size)
# Compare the output with the label
label = batch['label'].to(device) # (B, seq_len) postion in vocab
# (B, seq_len, tgt_vocab_size) --> (B * seq_len, tgt_vocab_size)
# each row corresponds to the predicted probabilities for a single word position in the batch. There are B * seq_len such positions in total.
loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
# Log the loss
writer.add_scalar('train loss', loss.item(), global_step)
# Backpropagate the loss
loss.backward()
# Update the weights
optimizer.step()
optimizer.zero_grad(set_to_none=True)
global_step += 1
run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer)
# Save the model at the end of every epoch
model_filename = get_weights_file_path(config, f"{epoch:02d}")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'global_step': global_step
}, model_filename)
if __name__ == '__main__':
warnings.filterwarnings("ignore")
config = get_config()
train_model(config)