-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevolution_effectiveness_tests.py
64 lines (56 loc) · 3.85 KB
/
evolution_effectiveness_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import argparse
import pandas as pd
from sklearn.model_selection import train_test_split
from test_utils import extract_labels, get_optimizer, create_dirs
from os import sep
import sys
sys.path.append('/common/matsumoton/git/digen')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", "-DS", type=str, help="Path and file name of the dataset")
parser.add_argument("--labelname", '-L', type=str, help="Name of the column containing the label in the csv")
parser.add_argument("--scoring", '-S', type=str, default=None, help="scoring metric")
parser.add_argument("--run_start_id", "-RS", type=int, dest='runstart', default=0, help="run id")
parser.add_argument("--run_end_id", "-RE", type=int, dest='runend', default=30, help="run id to end at (excluded)")
parser.add_argument("--pop_random_sampling", type=int, default=100, help="Population size for the random sampling")
parser.add_argument("--pop", type=int, default=20, help="Population size for TPOT")
parser.add_argument("--gen", type=int, default=10, help="Number of generations for the random sampling")
parser.add_argument("--classification", '-C', dest='classification', action='store_true')
parser.add_argument("--regression", '-R', dest='classification', action='store_false')
parser.set_defaults(classification=True)
args = parser.parse_args()
#args.dataset = "./datasets/Concrete.csv"
#args.labelname = "label"
gen_fitnesses_dir = "./results/gen_fitnesses"
offspring_dir = "./results/offspring_generation_test/"
resource_logging_dir = "./results/resource_logging/"
create_dirs(gen_fitnesses_dir)
create_dirs(offspring_dir)
create_dirs(resource_logging_dir)
for idx_run in range(args.runstart, args.runend):
print(idx_run)
df = pd.read_csv(args.dataset, sep=',')
dump_file_name = f"{args.dataset.split(sep)[-1].split('.')[0]}_R{idx_run}"
X, Y = extract_labels(df, args.labelname)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, train_size=0.8)
#from sklearn.datasets import load_digits
#digits = load_digits()
#X_train, X_test, Y_train, Y_test = train_test_split(digits.data, digits.target, train_size=0.75, test_size=0.25)
#X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
pipeline_optimizer = get_optimizer(args.classification, gens=1, pop_size=args.pop_random_sampling,
offspr_size=args.pop_random_sampling, scoring=args.scoring,
track_fitnesses=True,track_generations=True,resource_logging=True)
pipeline_optimizer.fit(X_train, Y_train)
no_ev_dump_file = f"{gen_fitnesses_dir}/{dump_file_name}_no_evolution_pop{args.pop_random_sampling}_gen0.csv"
pipeline_optimizer.dump_fitness_tracker(no_ev_dump_file)
# one generation is evaluated outside the number of generations (DEAP based)
pipeline_optimizer = get_optimizer(args.classification, gens=args.gen - 1, pop_size=args.pop,
offspr_size=args.pop, scoring=args.scoring, track_fitnesses=True,
track_generations=True, resource_logging=True)
pipeline_optimizer.fit(X_train, Y_train)
ev_dump_file = f"{gen_fitnesses_dir}/{dump_file_name}_evolution_pop{args.pop}_gen{args.gen}.csv"
offspring_dump_file = f"{offspring_dir}/{dump_file_name}_pop{args.pop}_gen{args.pop}"
resource_logging_dump_file = f"{resource_logging_dir}/{dump_file_name}_pop{args.pop}_gen{args.gen}"
pipeline_optimizer.dump_fitness_tracker(ev_dump_file)
pipeline_optimizer.dump_parents_offspring_fitnesses(offspring_dump_file)
pipeline_optimizer.dump_resource_logging(resource_logging_dump_file)