-
Notifications
You must be signed in to change notification settings - Fork 360
/
Copy pathtest.py
120 lines (82 loc) · 3.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import glob
import time
from datetime import datetime
import torch
import numpy as np
import gym
import roboschool
from PPO import PPO
#################################### Testing ###################################
def test():
print("============================================================================================")
################## hyperparameters ##################
# env_name = "CartPole-v1"
# has_continuous_action_space = False
# max_ep_len = 400
# action_std = None
# env_name = "LunarLander-v2"
# has_continuous_action_space = False
# max_ep_len = 300
# action_std = None
# env_name = "BipedalWalker-v2"
# has_continuous_action_space = True
# max_ep_len = 1500 # max timesteps in one episode
# action_std = 0.1 # set same std for action distribution which was used while saving
env_name = "RoboschoolWalker2d-v1"
has_continuous_action_space = True
max_ep_len = 1000 # max timesteps in one episode
action_std = 0.1 # set same std for action distribution which was used while saving
render = True # render environment on screen
frame_delay = 0 # if required; add delay b/w frames
total_test_episodes = 10 # total num of testing episodes
K_epochs = 80 # update policy for K epochs
eps_clip = 0.2 # clip parameter for PPO
gamma = 0.99 # discount factor
lr_actor = 0.0003 # learning rate for actor
lr_critic = 0.001 # learning rate for critic
#####################################################
env = gym.make(env_name)
# state space dimension
state_dim = env.observation_space.shape[0]
# action space dimension
if has_continuous_action_space:
action_dim = env.action_space.shape[0]
else:
action_dim = env.action_space.n
# initialize a PPO agent
ppo_agent = PPO(state_dim, action_dim, lr_actor, lr_critic, gamma, K_epochs, eps_clip, has_continuous_action_space, action_std)
# preTrained weights directory
random_seed = 0 #### set this to load a particular checkpoint trained on random seed
run_num_pretrained = 0 #### set this to load a particular checkpoint num
directory = "PPO_preTrained" + '/' + env_name + '/'
checkpoint_path = directory + "PPO_{}_{}_{}.pth".format(env_name, random_seed, run_num_pretrained)
print("loading network from : " + checkpoint_path)
ppo_agent.load(checkpoint_path)
print("--------------------------------------------------------------------------------------------")
test_running_reward = 0
for ep in range(1, total_test_episodes+1):
ep_reward = 0
state = env.reset()
for t in range(1, max_ep_len+1):
action = ppo_agent.select_action(state)
state, reward, done, _ = env.step(action)
ep_reward += reward
if render:
env.render()
time.sleep(frame_delay)
if done:
break
# clear buffer
ppo_agent.buffer.clear()
test_running_reward += ep_reward
print('Episode: {} \t\t Reward: {}'.format(ep, round(ep_reward, 2)))
ep_reward = 0
env.close()
print("============================================================================================")
avg_test_reward = test_running_reward / total_test_episodes
avg_test_reward = round(avg_test_reward, 2)
print("average test reward : " + str(avg_test_reward))
print("============================================================================================")
if __name__ == '__main__':
test()