-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathslugging.py
430 lines (336 loc) · 15.7 KB
/
slugging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import sys
import csv
from datetime import datetime
import math
import numpy as np
from numpy import array
import pandas as pd
from pandas import read_csv
from pandas import datetime
from matplotlib import pyplot, rcParams
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential, load_model
from keras.layers import LSTM, TimeDistributed, Dense, Activation
# Convert the sequence of seconds into datetime array
def parser(x):
now_seconds = 0
y = x.astype(np.float) + now_seconds
z = pd.to_datetime(y, unit='s')
return z
# Read the data from fname and eventually plot them
def read_data(fname, plot_data = False):
# Read the time series
datats = read_csv(fname, header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
headers = list(datats.columns.values)
headers.insert(0, datats.index.name)
# Resample the data using a uniform timestep
datats = datats.resample('S').mean()
datats = datats.interpolate(method='linear')
# Convert data to numpy array
data = datats.reset_index().values
# Replace timestamps with seconds
time_sec = array([data[i, 0].timestamp() for i in range(len(data))])
data = np.c_[time_sec, data[:, 1:]]
# Plot the pressure readings
if (plot_data):
pyplot.plot(data[:, 0], data[:, 1:8])
pyplot.xlabel(headers[0])
pyplot.ylabel('Pressure (bar)')
# Use the original headers
# headersplot = [w.replace('x_', '$x_') for w in headers[1:8]]
# headersplot = [w.replace('}=', '}$=') for w in headersplot]
# headersplot = [w.replace(' (bar)', '') for w in headersplot]
# Use the headers p(x=xi)
headersplot = [w[-8:-2] for w in headers[1:8]]
px = ['$p(x_{%d}' % i for i in range(1, 8)]
tail = [')$'] * 7
headersplot = [px + headersplot + tail for px, headersplot, tail in zip(px, headersplot, tail)]
pyplot.legend(headersplot)
pyplot.title('Distributed pressure readings')
pyplot.show(block=False)
pyplot.savefig('pressure_readings.pdf')
# Normalize the data
scaler = MinMaxScaler(feature_range=(0, 1))
scaler = scaler.fit(data)
scaler.scale_[0] = 1 # Do not normalize time
# Apply the same normalization to all pressure readings
pind = list(range(1, 8)) # Indices of pressure readings
pmin = scaler.data_min_[pind].min()
pmax = scaler.data_max_[pind].max()
scaler.scale_[pind] = ((scaler.feature_range[1] - scaler.feature_range[0]) / (pmax - pmin))
scaler.min_[pind] = scaler.feature_range[0] - pmin * scaler.scale_[pind]
data = scaler.transform(data)
return data, scaler
# Generate Nts sample input and output sequences from time series in data.
def generate_samples(data, features, Nts, step, length, shift):
X = np.zeros((Nts, length, len(features)))
tX = np.zeros((Nts, length))
for i in range(Nts):
X[i] = data[i*step+shift : i*step+shift+length, features]
tX[i] = data[i*step+shift : i*step+shift+length, 0]
return X, tX
# X, tX, Y, tY assumed to be normalized to [0, 1]
def visualize(X, tX, Y, tY):
Ns = X.shape[0] # Number of sequences
Nif = X.shape[2] # Number of input features
Nof = Y.shape[2] # Number of output features
# Plot input sequences
squeeze = 0.9
barheight = squeeze * np.minimum(1 / Ns, 0.1)
interbar = 0.1 * barheight
starty = 0.5 + (barheight + interbar) * Ns / 2
f, ax = pyplot.subplots(1, sharex=True)
pyplot.xlim(0, 1) # Fix the x range to (0, 1)
for i in range(Ns):
for j in range(Nif):
ax.plot(tX[i,:], X[i,:,j], 'b')
for j in range(Nof):
ax.plot(tY[i, :], Y[i, :, j], 'r')
#
# Add bars to indicate the span of data sequences
startybar = starty
for i in range(Ns):
endybar = startybar - barheight
ax.axhspan(startybar, endybar, xmin=min(tX[i,:]), xmax=max(tX[i,:]), facecolor='g', alpha=0.5) # Input
ax.axhspan(startybar, endybar, xmin=min(tY[i, :]), xmax=max(tY[i, :]), facecolor='r', alpha=0.5) # Output
startybar = endybar - interbar
ax.set_title('Data sequences', fontweight='bold')
pyplot.show(block=False)
def run(data, inp_features, outp_features, Nseq, Nts, step, inp, outp, model_name):
N = data.shape[0] # Overall sequence length
# Fix random seed for reproducibility
import os
import random
import tensorflow
import keras
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(1)
random.seed(1)
session_conf = tensorflow.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
#session_conf = tensorflow.ConfigProto(intra_op_parallelism_threads=8, inter_op_parallelism_threads=8)
tensorflow.set_random_seed(1)
sess = tensorflow.Session(graph=tensorflow.get_default_graph(), config=session_conf)
keras.backend.set_session(sess)
# Model name to save the weights
ilist = ['%d' % i for i in inp_features]
ilist = ''.join(ilist)
olist = ['%d' % i for i in outp_features]
olist = ''.join(olist)
mname = model_name + '_i' + ilist + '_o' + olist
model_fit = True # Fit the model, save it weights to mname.h5, save the convergence history to mname.svg, and run predictions
#model_fit = False # Load the previously saved mname.h5 and run predictions
pyplot.close('all')
X, tX = generate_samples(data, inp_features, Nts, step, inp, 0)
Y, tY = generate_samples(data, outp_features, Nts, step, outp, inp)
#visualize(X, tX, Y, tY)
if model_name == 'LSTM':
# Many-to-many with steps_before = steps_after
model = Sequential()
model.add(LSTM(units=10, input_shape=(inp, len(inp_features)), return_sequences=True))
model.add(LSTM(units=10, return_sequences=True))
model.add(LSTM(units=10, return_sequences=True))
model.add(TimeDistributed(Dense(len(outp_features))))
model.add(Activation('linear'))
# model.compile(loss='mean_squared_error', optimizer='rmsprop', metrics=['accuracy'])
model.compile(loss='mean_squared_error', optimizer='adam')
print(model.summary())
# Ironbell #2 & #3
history = model.fit(X, Y, batch_size=1, epochs=10, validation_split=0.05)
elif model_name == 'LSTM_Encoder':
# Many-to-many with steps_before <> steps_after
model = Sequential()
model.add(LSTM(units=10, input_shape=(None, len(inp_features)), return_sequences=False))
model.add(keras.layers.RepeatVector(outp))
model.add(LSTM(units=10, return_sequences=True))
model.add(LSTM(units=10, return_sequences=True))
model.add(TimeDistributed(Dense(len(outp_features))))
model.add(keras.layers.Activation('linear'))
#model.compile(loss='mean_squared_error', optimizer='rmsprop', metrics=['accuracy'])
model.compile(loss='mean_squared_error', optimizer='adam')
print(model.summary())
history = model.fit(X, Y, batch_size=1, epochs=10, validation_split=0.05)
elif model_name == 'FF': # Feedforward NN
if len(inp_features) != 1 or len(outp_features) != 1:
print('Feedforward NN is only defined for a single feature.. Exiting..')
return
X = X.reshape(len(X), inp)
Y = Y.reshape(len(Y), outp)
model = Sequential()
model.add(Dense(10, input_shape=(inp,)))
model.add(Dense(10))
model.add(Dense(10))
model.add(Dense(outp))
model.add(Activation('linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
print(model.summary())
history = model.fit(X, Y, batch_size=1, epochs=10, validation_split=0.05)
else:
print('Model not defined.. Exiting..')
return
# Save the model
model.save(mname + '.h5')
# Plotting the convergence history
pyplot.figure(3)
pyplot.semilogy(history.history['loss'])
pyplot.title('model loss')
pyplot.ylabel('loss')
pyplot.xlabel('epoch')
pyplot.show(block=False)
# Save the convergence history
df = pd.DataFrame(history.history['loss'])
df.index.name = 'Epoch'
df.to_csv(mname + '_convergence.csv', header=['loss'])
#pyplot.savefig(mname + '_convergence.svg')
pyplot.savefig(mname + '_convergence.pdf')
# Generating the test sequences covering all data, so that the output sequences are not-overlapping
step = outp
Ns = int((N-Nseq)/step + 1)
# Renamed X, tX etc to avoid a bug in PyCharm
XX, tXX = generate_samples(data, inp_features, Ns, step, inp, 0)
YY, tYY = generate_samples(data, outp_features, Ns, step, outp, inp)
if model_name == 'FF': # Feedforward NN
XX = XX.reshape(len(XX), inp)
# Prediction on all data
Ypred = model.predict(XX, verbose=0)
pyplot.figure(1)
for i in range(Ns):
#pyplot.plot(tXX[i], XX[i], linewidth=3)
pyplot.plot(tYY[i], YY[i], '+', linewidth=1)
pyplot.plot(tYY[i], Ypred[i], 'o', linewidth=3)
#pyplot.legend()
pyplot.show(block=False)
#pyplot.show()
pyplot.savefig(mname + '.svg')
pyplot.savefig(mname + '.pdf')
pyplot.savefig(mname + '.png')
print('Done..')
# -------------------------------------
# Main
# Fix the autolayout for matplotlib
rcParams.update({'figure.autolayout': True})
# Read the data
data, scaler = read_data('riser_pq_uni_small.csv') # , plot_data=True
# Prepare training sample sequences from data
N = data.shape[0] # Overall sequence length
train_frac = 0.5 # Fraction of data used for training
Ntr = int(train_frac * N) # Estimate the number of timesteps used for training
Nseq = Ntr // 4 # Length of a training sequence
# Ensure and even Nseq to get inp=outp below
if Nseq % 2 != 0:
Nseq = Nseq - 1
if Nseq < 2 or Nseq > Ntr:
print('Please set the training sequence length within [2, ' + repr(Ntr) + ']')
sys.exit(1)
pred_frac = 0.5 # Within a training sequence, fraction of data used for prediction
outp = max(1, int(pred_frac * Nseq)) # Number of timesteps in the output sequence
inp = Nseq - outp # Number of timesteps in the input training sequence
# Set the number of training sequences => compute the sequence indentation step
# Nts = 5 # Number of training sequences
# step = int((Ntr - Nseq) / (Nts - 1)) # Subsequent training sequences are indented from each other by step
# if step > inp:
# print('Warning: input training sequences are not overlapping!!')
# Set the sequence indentation step => compute the number of training sequences
# step = max(1, inp//2) # the offset is too big => too few sequences fit until Ntr..
step = 1
Nts = int((Ntr - Nseq) / step + 1)
Ntr = Nseq + step * (Nts - 1) # Adjust Ntr for the specified step & Nts
rf = False
if rf: # Run forecasts using different number of features
features = range(1, 8)
for n in features:
inp_features = [i for i in range(1, n + 1)]
#inp_features.append(9)
outp_features = [9] # Indices of columns in data which will be used as output features
run(data, inp_features, outp_features, Nseq, Nts, step, inp, outp, 'LSTM')
else: # Plot previously saved forecasts
plot_convergence = True
plot_forecasts = True
pyplot.close('all')
pyplot.plot(data[:,0], data[:,9], color='black', label='Ground truth', linewidth=3)
features = range(7,0,-1) # For better visualization
nfeatures = len(features)
nl = 0
for n in features:
inp_features = [i for i in range(1, n + 1)] # Indices of columns in data which will be used as input features
outp_features = [9] # Indices of columns in data which will be used as output features
model_name = 'LSTM'
#model_name = 'LSTM_Encoder'
# Model name to plot
ilist = ['%d' % i for i in inp_features]
ilist = ''.join(ilist)
olist = ['%d' % i for i in outp_features]
olist = ''.join(olist)
mname = model_name + '_i' + ilist + '_o' + olist
#mname = model_name + '_i' + ilist + '9_o' + olist
# Plot label
# plabel = ['p($x_%d $), ' % i for i in inp_features]
# plabel= ''.join(plabel)
# plabel = plabel[:-2]
# plabel = 'Forecast using ' + plabel
if len(inp_features) == 1:
plabel = '{' + str(inp_features[0]) + '}'
elif len(inp_features) == 2:
plabel = '{' + str(inp_features[0]) + ', ' + str(inp_features[-1]) + '}'
else:
plabel = '{' + str(inp_features[0]) + ', \\dots, ' + str(inp_features[-1]) + '}'
# if n == 8:
# plabel = 'FF using $p(x_' + plabel + ')$'
# elif n == 0:
# plabel = 'LSTM using $p(x_' + plabel + ')$ & $q_l$'
# else:
# plabel = 'LSTM using $p(x_' + plabel + ')'
plabel = 'LSTM using $p(x_' + plabel + ')$'
#plabel = 'LSTM Encoder-Decoder using $p(x_' + plabel + ')$'
#plabel = 'LSTM using $p(x_' + plabel + ')$ & $q_l$'
# Read the convergence history from *.csv files and keep it in convhist
if plot_convergence:
cvh = read_csv(mname + '_convergence.csv', header=0, index_col=0, squeeze=True)
cvh = cvh.reset_index().values
if nl == 0:
convhist = cvh
convhist_label = array([plabel])
else:
convhist = np.c_[convhist, cvh[:, 1]]
convhist_label = np.append(convhist_label, plabel)
if plot_forecasts:
# Load the previously saved Keras model
model = load_model(mname + '.h5')
# Generating the test sequences covering all data
step = outp # Non-overlapping output sequences
#step = outp // 2 # Overlapping output sequences
Ns = int((N-Nseq)/step + 1)
seqlabel = ['Sequence %d' % i for i in range(Ns)]
# Renamed X, tX etc to avoid a bug in PyCharm
XX, tXX = generate_samples(data, inp_features, Ns, step, inp, 0)
YY, tYY = generate_samples(data, outp_features, Ns, step, outp, inp)
if model_name == 'FF': # Feedforward NN
XX = XX.reshape(len(XX), inp)
# Prediction on all data
Ypred = model.predict(XX, verbose=0)
# Plot predictions
pyplot.figure(1)
for i in range(Ns):
# Inverse coloring all readings
if i == 0:
pyplot.plot(tYY[i], Ypred[i], color=(( 1 - nl/(nfeatures-1), 0, nl/(nfeatures-1) )), label=plabel)
else:
pyplot.plot(tYY[i], Ypred[i], color=(( 1 - nl/(nfeatures-1), 0, nl/(nfeatures-1) )))
nl += 1
pyplot.xlabel('Time (sec)')
pyplot.ylabel('Normalized liquid rate')
pyplot.title('Liquid rate forecast')
pyplot.legend()
pyplot.show(block=False)
pyplot.savefig('forecast_pressure_reverse.pdf')
# Plot convergence history
if plot_convergence:
pyplot.figure(2)
for i in range(nfeatures):
pyplot.semilogy(convhist[:, 0], convhist[:, i+1], color=(( 1 - i/(nfeatures-1), 0, i/(nfeatures-1) )), label=convhist_label[i])
pyplot.xlabel('Epoch')
pyplot.ylabel('MSE')
pyplot.ylim(0.001, 0.02) # To compare convergence histories
pyplot.title('Convergence history')
pyplot.legend()
pyplot.show(block=False)
pyplot.savefig('conv_history.pdf')