-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathwelltest.py
474 lines (380 loc) · 17.8 KB
/
welltest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import sys
#import csv
import datetime as dttm
import math
import numpy as np
from numpy import array
import pandas as pd
from pandas import read_csv
from pandas import datetime
from matplotlib import pyplot, rcParams, dates
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential, load_model
from keras.layers import LSTM, TimeDistributed, Dense, Activation
def read_data(fname, plot_data = False):
# Read the time series
datats = read_csv(fname, header=0, dayfirst=True, parse_dates=[0], index_col=0, squeeze=True) # , date_parser=parser
headers = list(datats.columns.values)
headers.insert(0, datats.index.name)
# Convert data to numpy array
data = datats.reset_index().values
# Split data into flow periods, and resample each flow period using a uniform timestep
dt = np.ediff1d(data[:, 0])
fpbreak = dttm.timedelta(hours=1) # Minimal break between flow periods
dt = dt - fpbreak
ind = np.where(dt - fpbreak > pd.Timedelta(0))[0]
ind = np.r_[ind, len(data)-1]
Nfp = len(ind) # Number of flow periods
fp = ['None'] * Nfp
n0 = 0
n1 = ind[0]+1
for n in range(Nfp):
# Resample each flow period separately
fpts = datats[n0:n1].resample('T').mean()
fpts = fpts.interpolate(method='linear')
# Save the resampled flow period to a list of numpy arrays
fp[n] = fpts.reset_index().values
#fp[n] = data[n0:n1,:]
n0 = n1
if n+1 < Nfp:
n1 = ind[n+1] + 1
# Plot the graphs
if (plot_data):
color = pyplot.rcParams['axes.prop_cycle'].by_key()['color']
dfmt = dates.DateFormatter('%b %d') # Month day
# Pressure and temperature
fig, ax1 = pyplot.subplots()
ax2 = ax1.twinx()
for n in range(Nfp):
if n == 0:
hl1 = ax1.plot(fp[n][:, 0], fp[n][:, 1], color=color[3], label='Pressure')
hl2 = ax2.plot(fp[n][:, 0], fp[n][:, 2], color=color[4], label='Temperature')
else:
ax1.plot(fp[n][:, 0], fp[n][:, 1], color=color[3])
ax2.plot(fp[n][:, 0], fp[n][:, 2], color=color[4])
ax1.xaxis.set_major_formatter(dfmt)
fig.autofmt_xdate()
ax1.set_ylabel(headers[1], color=color[3])
ax1.tick_params(axis='y', colors=color[3])
headers[2] = headers[2].replace('degC', '°C')
ax2.set_ylabel(headers[2], color=color[4])
ax2.tick_params(axis='y', colors=color[4])
hl = hl1 + hl2
labs = [h.get_label() for h in hl]
ax1.legend(hl, labs, loc=2)
pyplot.title('Pressure and temperature data')
pyplot.show(block=False)
pyplot.savefig('wt_PT.pdf')
# Flow rates
fig, ax1 = pyplot.subplots()
ax2 = ax1.twinx()
for n in range(Nfp):
if n == 0:
hl1 = ax1.plot(fp[n][:, 0], fp[n][:, 3], color=color[1], label='Oil rate')
hl2 = ax1.plot(fp[n][:, 0], fp[n][:, 4], color=color[0], label='Water rate')
hl3 = ax2.plot(fp[n][:, 0], fp[n][:, 5], color=color[2], label='Gas rate')
else:
ax1.plot(fp[n][:, 0], fp[n][:, 3], color=color[1])
ax1.plot(fp[n][:, 0], fp[n][:, 4], color=color[0])
ax2.plot(fp[n][:, 0], fp[n][:, 5], color=color[2])
ax1.xaxis.set_major_formatter(dfmt)
fig.autofmt_xdate()
rheader = headers[3].split()[0] + ' & ' + headers[4]
ax1.set_ylabel(rheader, color=color[1])
ax1.tick_params(axis='y', colors=color[1])
ax2.ticklabel_format(axis='y', style='sci', scilimits=(0,0))
ax2.set_ylabel(headers[5], color=color[2])
ax2.tick_params(axis='y', colors=color[2])
hl = hl1 + hl2 + hl3
labs = [h.get_label() for h in hl]
ax1.legend(hl, labs, loc=1)
pyplot.title('Flow rates data')
pyplot.show(block=False)
pyplot.savefig('wt_Q.pdf')
# Get the normalization parameters for all data
scaler = MinMaxScaler(feature_range=(0, 1))
scaler = scaler.fit(data[:,1:]) # Exclude Datetime from normalization
# Normalize every flow period
for n in range(Nfp):
fp[n][:,1:] = scaler.transform(fp[n][:,1:])
return fp, headers, scaler
# Define sequences, shifted by step, for all flow periods fp
def define_fp_seq(fp, step, verbose=False):
Nseqmin = max([fp[n].shape[0] for n in FP])
for n in FP:
N = fp[n].shape[0] # Sequence length for the n-th training flow period
train_frac = 1 # Fraction of data used for training
Ntr = int(train_frac * N) # Estimate the number of timesteps used for training
Nseq = Ntr // 4 # Length of a training sequence
# Ensure even Nseq to get inp=outp below
if Nseq % 2 != 0:
Nseq = Nseq - 1
if Nseq < 2 or Nseq > Ntr:
print('Please set the training sequence length within [2, ' + repr(Ntr) + ']')
sys.exit(1)
pred_frac = 0.5 # Within a training sequence, fraction of data used for prediction
outp = max(1, int(pred_frac * Nseq)) # Number of timesteps in the output sequence
inp = Nseq - outp # Number of timesteps in the input training sequence
# Compute the number of training sequences
Nts = int((Ntr - Nseq) / step + 1)
Ntr = Nseq + step * (Nts - 1) # Adjust Ntr for the specified step & Nts
if verbose:
print('Flow period ' + str(n) + ':')
print(' Length of a training sequence: ' + str(Nseq))
print(' Number of training sequences: ' + str(Nts))
print(' Sequence indentation step: ' + str(step))
if Nseq < Nseqmin:
Nseqmin = Nseq
nmin = n
# Choose the minimal Nseq
Nseq = Nseqmin
if verbose:
print('Choosing min training sequence length of ' + str(Nseq) + ' from flow period ' + str(nmin))
pred_frac = 0.5 # Within a training sequence, fraction of data used for prediction
outp = max(1, int(pred_frac * Nseq)) # Number of timesteps in the output sequence
inp = Nseq - outp # Number of timesteps in the input training sequence
# Create a list of Nts for all flow periods
Ntsfp = np.zeros(Nfp, dtype=np.int)
for n in FP:
N = fp[n].shape[0] # Sequence length for the n-th flow period
train_frac = 1 # Fraction of data used for training
Ntr = int(train_frac * N) # Estimate the number of timesteps used for training
Ntsfp[n] = int((Ntr - Nseq) / step + 1)
return Nseq, Ntsfp, inp, outp
def generate_samples(data, features, Nts, step, length, shift):
X = np.zeros((Nts, length, len(features)))
tX = np.tile(data[0,0], (Nts, length)) # Create a 2D timestamp array
for i in range(Nts):
X[i] = data[i*step+shift : i*step+shift+length, features]
tX[i] = data[i*step+shift : i*step+shift+length, 0]
return X, tX
# X, tX, Y, tY assumed to be normalized to [0, 1]
def visualize(X, tX, Y, tY):
Ns = X.shape[0] # Number of sequences
Nif = X.shape[2] # Number of input features
Nof = Y.shape[2] # Number of output features
pyplot.close('all')
# Plot input sequences
squeeze = 0.9
barheight = squeeze * np.minimum(1 / Ns, 0.1)
interbar = 0.1 * barheight
starty = 0.5 + (barheight + interbar) * Ns / 2
f, ax = pyplot.subplots(1, sharex=True)
pyplot.xlim(0, 1) # Fix the x range to (0, 1)
for i in range(Ns):
for j in range(Nif):
ax.plot(tX[i,:], X[i,:,j], 'b')
for j in range(Nof):
ax.plot(tY[i, :], Y[i, :, j], 'r')
# Add bars to indicate the span of data sequences
startybar = starty
for i in range(Ns):
endybar = startybar - barheight
ax.axhspan(startybar, endybar, xmin=min(tX[i,:]), xmax=max(tX[i,:]), facecolor='g', alpha=0.5) # Input
ax.axhspan(startybar, endybar, xmin=min(tY[i, :]), xmax=max(tY[i, :]), facecolor='r', alpha=0.5) # Output
startybar = endybar - interbar
ax.set_title('Data sequences', fontweight='bold')
pyplot.show(block=False)
def run(fp, TFP, inp_features, outp_features, Nseq, Ntsfp, step, inp, outp, model_name):
# Fix random seed for reproducibility
import os
import random
import tensorflow
import keras
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(1)
random.seed(1)
session_conf = tensorflow.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
#session_conf = tensorflow.ConfigProto(intra_op_parallelism_threads=8, inter_op_parallelism_threads=8)
tensorflow.set_random_seed(1)
sess = tensorflow.Session(graph=tensorflow.get_default_graph(), config=session_conf)
keras.backend.set_session(sess)
# Model name to save the weights
ilist = ['%d' % i for i in inp_features]
ilist = ''.join(ilist)
olist = ['%d' % i for i in outp_features]
olist = ''.join(olist)
mname = model_name + '_i' + ilist + '_o' + olist
# Generate training sequences for selected flow periods
for n in TFP:
_X, _tX = generate_samples(fp[n], inp_features, Ntsfp[n], step, inp, 0)
_Y, _tY = generate_samples(fp[n], outp_features, Ntsfp[n], step, outp, inp)
# Accumulate sequences from all training periods
if n == 0:
X, tX = _X, _tX
Y, tY = _Y, _tY
else:
X = np.append(X, _X, axis=0)
tX = np.append(tX, _tX, axis=0)
Y = np.append(Y, _Y, axis=0)
tY = np.append(tY, _tY, axis=0)
if model_name == 'LSTM':
model = Sequential()
model.add(LSTM(units=10, input_shape=(inp, len(inp_features)), return_sequences=True))
model.add(LSTM(units=10, return_sequences=True))
model.add(LSTM(units=10, return_sequences=True))
model.add(TimeDistributed(Dense(len(outp_features))))
model.add(Activation('linear'))
# model.compile(loss='mean_squared_error', optimizer='rmsprop', metrics=['accuracy'])
model.compile(loss='mean_squared_error', optimizer='adam')
history = model.fit(X, Y, batch_size=1, epochs=10, validation_split=0.05)
elif model_name == 'FF': # Feedforward NN
if len(inp_features) != 1 or len(outp_features) != 1:
print('Feedforward NN is only defined for a single feature.. Exiting..')
return
X = X.reshape(len(X), inp)
Y = Y.reshape(len(Y), outp)
model = Sequential()
model.add(Dense(10, input_shape=(inp,)))
model.add(Dense(10))
model.add(Dense(10))
model.add(Dense(outp))
model.add(Activation('linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
print(model.summary())
history = model.fit(X, Y, batch_size=1, epochs=10, validation_split=0.05)
else:
print('Model not defined.. Exiting..')
return
# Save the model
model.save(mname + '.h5')
# Plotting the convergence history
pyplot.figure(3)
pyplot.semilogy(history.history['loss'])
pyplot.title('model loss')
pyplot.ylabel('loss')
pyplot.xlabel('epoch')
pyplot.show(block=False)
# Save the convergence history
df = pd.DataFrame(history.history['loss'])
df.index.name = 'Epoch'
df.to_csv(mname + '_convergence.csv', header=['loss'])
pyplot.savefig(mname + '_convergence.pdf')
print('Done..')
return model
# -------------------------------------
# Main
# Fix the autolayout for matplotlib
rcParams.update({'figure.autolayout': True})
# Read and normalize the flow periods
fp, headers, scaler = read_data('welltest.csv') # , plot_data=True
inp_features = [1, 2] # Indices of columns in data which will be used as output features
outp_features = [3, 4, 5] # Indices of columns in data which will be used as output features
TFP = [0, 1] # Indices of flow periods, used for training
Ntfp = len(TFP) # Number of flow periods, used for training
Nfp = len(fp) # Number of flow periods
FP = list(range(Nfp))
errFP = set(TFP) - set(FP)
if Ntfp > Nfp:
print('Too many training flow periods.. Exiting..')
sys.exit(1)
if len(errFP) > 0:
print('Incorrect training flow period(s): ' + errFP + ' Exiting..')
sys.exit(1)
# Define sequences, shifted by step, for all flow periods fp
step = 1
Nseq, Ntsfp, inp, outp = define_fp_seq(fp, step)
# Compute the relative forecasting interval
DT = pd.Timedelta(0)
for i in TFP:
t0 = fp[i][0,0]
t1 = fp[i][-1, 0]
dt = t1 - t0
DT += dt
DT = DT.days * 24 * 60 + DT.seconds / 60 # Convert DT to minutes
print('Relative forecasting interval: ' + str(outp/DT*100) + '%')
# File name for the model
model_name = 'LSTM'
ilist = ['%d' % i for i in inp_features]
ilist = ''.join(ilist)
olist = ['%d' % i for i in outp_features]
olist = ''.join(olist)
tfplist = ['%d' % i for i in TFP]
tfplist = ''.join(tfplist)
#mname = model_name + '_i' + ilist + '_o' + olist + '_FP' + str(tfplist)
mname = model_name + '_i' + ilist + '_o' + olist
# Get the trained Keras model
train_model = True
if train_model:
model = run(fp, TFP, inp_features, outp_features, Nseq, Ntsfp, step, inp, outp, model_name)
else: # Load the previously saved Keras model
model = load_model(mname + '.h5')
# Running predictions with the model
#step = outp # Adjusting number of non-overlapping sequences in flow periods
step = outp // 2 # Overlap sequences in flow periods
Nsfp = np.zeros(Nfp, dtype=np.int)
for n in FP:
N = fp[n].shape[0] # Sequence length for the n-th flow period
Nsfp[n] = int((N - Nseq) / step + 1) # Number of sequences of length Nseq in fp[n]
# Generating the test sequences covering all data, so that the output sequences are non-overlapping
for n in FP:
_X, _tX = generate_samples(fp[n], inp_features, Nsfp[n], step, inp, 0)
_Y, _tY = generate_samples(fp[n], outp_features, Nsfp[n], step, outp, inp)
_Yplot, _tplot = generate_samples(fp[n], outp_features, Nsfp[n], step, inp, 0) # To fill the gap in plotting forecasts at the beginning of each flow period
# Accumulate sequences from all training periods
if n == 0:
X, tX = _X, _tX
Y, tY = _Y, _tY
Yplot, tplot = _Yplot, _tplot
else:
X = np.append(X, _X, axis=0)
tX = np.append(tX, _tX, axis=0)
Y = np.append(Y, _Y, axis=0)
tY = np.append(tY, _tY, axis=0)
Yplot = np.append(Yplot, _Yplot, axis=0)
tplot = np.append(tplot, _tplot, axis=0)
# Prediction on all data
Ypred = model.predict(X, verbose=0)
# Get back the dimensional rates
Y -= scaler.min_[2:]
Y /= scaler.scale_[2:]
Ypred -= scaler.min_[2:]
Ypred /= scaler.scale_[2:]
Yplot -= scaler.min_[2:]
Yplot /= scaler.scale_[2:]
# Plotting parameters
color = pyplot.rcParams['axes.prop_cycle'].by_key()['color']
dfmt = dates.DateFormatter('%b %d') # Month day
fig, ax1 = pyplot.subplots()
ax2 = ax1.twinx()
Ns = X.shape[0]
opacity = 0.2
for i in range(Ns):
# Filling the gap in plotting forecasts at the beginning of each flow period
ax1.plot(tplot[i], Yplot[i, :, 0], color=color[1], zorder=0)
ax1.plot(tplot[i], Yplot[i, :, 1], color=color[0], zorder=0)
ax2.plot(tplot[i], Yplot[i, :, 2], color=color[8], zorder=0)
if i == 0:
hl1 = ax1.plot(tY[i], Y[i, :, 0], color=color[1], zorder=0, label='Measured Qo')
hl2 = ax1.plot(tY[i], Y[i, :, 1], color=color[0], zorder=0, label='Measured Qw')
hl3 = ax2.plot(tY[i], Y[i, :, 2], color=color[8], zorder=0, label='Measured Qg')
hl4 = ax1.plot(tY[i, step:], Ypred[i, step:, 0], 'r', zorder=1, linewidth=3, label='Forecasted Qo')
hl5 = ax1.plot(tY[i, step:], Ypred[i, step:, 1], 'b', zorder=1, linewidth=3, label='Forecasted Qw')
hl6 = ax2.plot(tY[i, step:], Ypred[i, step:, 2], 'g', zorder=1, linewidth=3, label='Forecasted Qg')
ax1.plot(tY[i, :step], Ypred[i, :step, 0], 'r', zorder=1, alpha=opacity, linewidth=3) # Semi-transparent oil rate
ax1.plot(tY[i, :step], Ypred[i, :step, 1], 'b', zorder=1, alpha=opacity, linewidth=3) # Semi-transparent water rate
ax2.plot(tY[i, :step], Ypred[i, :step, 2], 'g', zorder=1, alpha=opacity, linewidth=3) # Semi-transparent gas rate
else:
ax1.plot(tY[i], Y[i, :, 0], color=color[1], zorder=0) # 'Oil rate'
ax1.plot(tY[i], Y[i, :, 1], color=color[0], zorder=0) # 'Water rate'
ax2.plot(tY[i], Y[i, :, 2], color=color[8], zorder=0) # 'Gas rate'
ax1.plot(tY[i, :step], Ypred[i, :step, 0], 'r', zorder=1, alpha=opacity, linewidth=3) # Semi-transparent oil rate
ax1.plot(tY[i, :step], Ypred[i, :step, 1], 'b', zorder=1, alpha=opacity, linewidth=3) # Semi-transparent water rate
ax2.plot(tY[i, :step], Ypred[i, :step, 2], 'g', zorder=1, alpha=opacity, linewidth=3) # Semi-transparent gas rate
ax1.plot(tY[i, step:], Ypred[i, step:, 0], 'r', zorder=1, linewidth=3) # 'Oil rate'
ax1.plot(tY[i, step:], Ypred[i, step:, 1], 'b', zorder=1, linewidth=3) # 'Water rate'
ax2.plot(tY[i, step:], Ypred[i, step:, 2], 'g', zorder=1, linewidth=3) # 'Gas rate'
ax1.xaxis.set_major_formatter(dfmt)
fig.autofmt_xdate()
rheader = headers[3].split()[0] + ' & ' + headers[4]
ax1.set_ylabel(rheader, color=color[1])
ax1.tick_params(axis='y', colors=color[1])
ax2.ticklabel_format(axis='y', style='sci', scilimits=(0, 0))
ax2.set_ylabel(headers[5], color=color[2])
ax2.tick_params(axis='y', colors=color[2])
hl = hl1 + hl2 + hl3 + hl4 + hl5 + hl6
labs = [h.get_label() for h in hl]
ax1.legend(hl, labs, loc=1)
pyplot.title('Flow rates data')
pyplot.show(block=False)
pyplot.savefig('wt_Q_forecast.pdf')