-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_data.py
232 lines (179 loc) · 9.75 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from __future__ import print_function
import csv
from itertools import islice
import numpy as np
import os
import pickle
from pyspark import SparkContext, SparkConf
from pyspark.ml.feature import Bucketizer
from pyspark.sql import SQLContext
from pyspark.sql import functions as func
from pyspark.sql.types import StructField, StructType, StringType
import sys
class PreprocessData():
def __init__(self):
return
# we pass a df and the field column we want to bucketize
def bucketize(self, df, field):
df = df.withColumn(field, df[field].cast("double"))
max = df.agg({field: "max"}).collect()[0][0]
min = df.agg({field: "min"}).collect()[0][0]
stddev = df.agg({field: "stddev"}).collect()[0][0]
number_of_buckets = 1
if stddev != 0:
number_of_buckets = ((max - min) // (stddev))
buckets = np.arange(number_of_buckets, dtype=np.float).tolist()
buckets = [-float('inf')] + buckets + [float('inf')]
bucketizer = Bucketizer(splits=buckets, inputCol=field,
outputCol=field + '_bucketized')
print("Bucketizing column: ", field)
bucketized_features = bucketizer.transform(df)
return bucketized_features
def take(self, n, iterable):
"Return first n items of the iterable as a list"
return list(islice(iterable, n))
def field_name_changer(self, df, field):
def func_inner(value):
return str(value) + field
field_udf = func.udf(func_inner, StringType())
return df.withColumn(field + '_enc', field_udf(field))
def write_data(self, allFiles, training=True, time_data=False, num_of_logs=40):
config = model_parameters.train_config()
with open(config.vocabulary_dir, 'rb') as handle:
vocabulary = pickle.load(handle)
with open(config.frequency_dict_dir, 'rb') as handle:
dictionaryOfFrequencies = pickle.load(handle)
print("Vocabulary and dictionary of frequencies loaded.")
labels = []
logs = []
previous_logs = [[4044] * 41] * num_of_logs
if time_data : previous_labels = [0] * num_of_logs
id = 0
for f in os.listdir(allFiles):
_ = open(allFiles + f, 'r')
row_count = len(_.readlines())
_.close()
with open(allFiles + f, 'r') as csvfile:
reader = csv.reader(csvfile)
r = 0
for row in reader:
if (training):
randomIndex = np.random.randint(0, 39)
log = row[0].split(",")
if np.random() > (1 / int(dictionaryOfFrequencies.get(log[randomIndex]))):
log[randomIndex] = "unknown"
else:
log = row[0].split(",")
for n, token in enumerate(log):
if (vocabulary.get(token) == None):
log[n] = 'unknown'
current_log = list(map(vocabulary.get, log))
previous_logs.append(current_log[:-1])
previous_logs.pop(0)
logs.append(np.array(previous_logs).flatten())
if (current_log[-1] == vocabulary.get("normal.")):
if time_data :
previous_labels.pop(0)
previous_labels.append(0)
labels.append(np.array(previous_labels).flatten())
else:
labels.append(0)
else:
if time_data :
previous_labels.pop(0)
previous_labels.append(1)
labels.append(np.array(previous_labels).flatten())
else:
labels.append(1)
r = r + 1
if(len(labels) > 50000 or r == row_count - 1):
with open(str(id) + "kdd_indexed.csv", 'w') as myfile:
wr = csv.writer(myfile, dialect='excel')
wr.writerows(logs[:])
with open(str(id) + "labels.npy", 'w') as myfile:
np.save(myfile, labels)
print("Wrote " + str(id) + "kdd_indexed.csv")
logs = []
labels = []
id = id + 1
if (r == row_count - 1): r = 0
if __name__ == '__main__':
_conf = SparkConf().set("spark.driver.maxResultSize", "2G").setAppName('KDD preprocessing')
_sc = SparkContext(conf=_conf)
_sqlC = SQLContext(_sc)
schema = StructType([
StructField("duration", StringType(), True),
StructField("protocol_type", StringType(), True),
StructField("service", StringType(), True),
StructField("flag", StringType(), True),
StructField("src_bytes", StringType(), True),
StructField("dst_bytes", StringType(), True),
StructField("land", StringType(), True),
StructField("wrong_fragment", StringType(), True),
StructField("urgent", StringType(), True),
StructField("hot", StringType(), True),
StructField("num_failed_logins", StringType(), True),
StructField("logged_in", StringType(), True),
StructField("num_compromised", StringType(), True),
StructField("root_shell", StringType(), True),
StructField("su_attempted", StringType(), True),
StructField("num_root", StringType(), True),
StructField("num_file_creations", StringType(), True),
StructField("num_shells", StringType(), True),
StructField("num_access_files", StringType(), True),
StructField("num_outbound_cmds", StringType(), True),
StructField("is_host_login", StringType(), True),
StructField("is_guest_login", StringType(), True),
StructField("count", StringType(), True),
StructField("srv_count", StringType(), True),
StructField("serror_rate", StringType(), True),
StructField("srv_serror_rate", StringType(), True),
StructField("rerror_rate", StringType(), True),
StructField("srv_rerror_rate", StringType(), True),
StructField("same_srv_rate", StringType(), True),
StructField("diff_srv_rate", StringType(), True),
StructField("srv_diff_host_rate", StringType(), True),
StructField("dst_host_count", StringType(), True),
StructField("dst_host_srv_count", StringType(), True),
StructField("dst_host_same_srv_rate", StringType(), True),
StructField("dst_host_diff_srv_rate", StringType(), True),
StructField("dst_host_same_src_port_rate", StringType(), True),
StructField("dst_host_srv_diff_host_rate", StringType(), True),
StructField("dst_host_serror_rate", StringType(), True),
StructField("dst_host_srv_serror_rate", StringType(), True),
StructField("dst_host_rerror_rate", StringType(), True),
StructField("dst_host_srv_rerror_rate", StringType(), True),
StructField("answer", StringType(), True)
])
final_struc = StructType(fields=schema)
rdd_kdd = _sc.textFile(sys.argv[1]).map(lambda x : x.split(","))
df = _sqlC.createDataFrame(rdd_kdd, schema=schema)
preprocessing = PreprocessData()
continues_data_for_bucket_labels = ["duration", "dst_bytes", "count", "serror_rate", "rerror_rate", "same_srv_rate",
"diff_srv_rate", "srv_count", "srv_serror_rate", "srv_rerror_rate"]
for col in continues_data_for_bucket_labels:
df = preprocessing.bucketize(df, col)
field_names = ["duration_bucketized","src_bytes", "dst_bytes", "land", "wrong_fragment", "urgent",
"hot", "num_failed_logins", "logged_in", "num_compromised", "root_shell", "su_attempted", "num_root",
"num_file_creations", "num_shells", "num_access_files", "num_outbound_cmds", "is_host_login",
"is_guest_login", "count_bucketized", "srv_count_bucketized", "serror_rate_bucketized",
"srv_serror_rate_bucketized", "rerror_rate_bucketized", "srv_rerror_rate_bucketized",
"same_srv_rate_bucketized", "diff_srv_rate_bucketized", "srv_diff_host_rate", "dst_host_count",
"dst_host_srv_count", "dst_host_same_srv_rate", "dst_host_diff_srv_rate",
"dst_host_same_src_port_rate", "dst_host_srv_diff_host_rate", "dst_host_serror_rate",
"dst_host_srv_serror_rate", "dst_host_rerror_rate", "dst_host_srv_rerror_rate"]
for field in field_names:
df = preprocessing.field_name_changer(df, field)
logs_fields = ["protocol_type","flag","service"]+[ item + "_enc" for item in field_names] + ["answer"]
df = df.select(func.concat_ws(",", *logs_fields))
df.write.csv(sys.argv[2])
alltokens = df.rdd.map(list).flatMap(lambda row : row[0].split(','))
vocabulary = alltokens.distinct().zipWithIndex().collectAsMap()
vocabulary['unknown'] = 404404
print(vocabulary)
with open('vocabulary.pickle', 'wb') as handle:
pickle.dump(vocabulary, handle, protocol=pickle.HIGHEST_PROTOCOL)
word_frequencies = alltokens.map(lambda token : (token, 1)).reduceByKey(lambda a, b: a + b).sortBy(lambda x :-x[1])
with open("word_frequencies.pickle", 'wb') as handle:
pickle.dump(word_frequencies.collectAsMap(), handle, protocol=pickle.HIGHEST_PROTOCOL)
_sc.stop()