-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_msvae.py
329 lines (274 loc) · 13.5 KB
/
main_msvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import torch
import torch.nn.functional as F
from torch_geometric.data import Data
import os
import argparse
import toml
from pathlib import Path
from torch_geometric.utils import from_networkx
import networkx as nx
from scipy.optimize import linear_sum_assignment
from torch.optim import Adam
from torch_geometric.loader import DataLoader
from tqdm import tqdm
class MSVAEEncoder(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(MSVAEEncoder, self).__init__()
self.hidden_layer = torch.nn.Linear(input_dim, hidden_dim)
self.mean_layer = torch.nn.Linear(hidden_dim, latent_dim)
self.logvar_layer = torch.nn.Linear(hidden_dim, latent_dim)
def forward(self, x, batch):
h = F.relu(self.hidden_layer(x))
mean, logvar = self.mean_layer(h), self.logvar_layer(h)
return mean, logvar
class MSVAEDecoder(torch.nn.Module):
def __init__(self, latent_dim, hidden_dim, max_output_dim):
super(MSVAEDecoder, self).__init__()
self.hidden_layer = torch.nn.Linear(latent_dim, hidden_dim)
self.degree_layer = torch.nn.Linear(hidden_dim, max_output_dim)
self.multiplicity_layer = torch.nn.Linear(hidden_dim, max_output_dim)
def forward(self, z, output_dim):
h = F.relu(self.hidden_layer(z))
degrees = F.softmax(self.degree_layer(h), dim=-1)
multiplicities = F.softplus(self.multiplicity_layer(h))
return degrees, multiplicities
class MSVAE(torch.nn.Module):
def __init__(self, max_input_dim, hidden_dim, latent_dim):
super(MSVAE, self).__init__()
self.encoder = MSVAEEncoder(max_input_dim, hidden_dim, latent_dim)
self.decoder = MSVAEDecoder(latent_dim, hidden_dim, max_output_dim=max_input_dim)
self.latent_dim = latent_dim
def reparameterize(self, mean, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mean + eps * std
def forward(self, data):
x, batch = data.x, data.batch
mean, logvar = self.encoder(x, batch)
z = self.reparameterize(mean, logvar)
degrees, frequencies = self.decoder(z, x.size(0))
return degrees, frequencies, mean, logvar, x.size(0)
def generate(self, num_samples):
self.eval()
with torch.no_grad():
z = torch.randn((num_samples, self.latent_dim))
degrees, frequencies = self.decoder(z, self.decoder.degree_layer.out_features)
# Use reconstruct_multiset to get the degree multiset
degree_multiset = reconstruct_multiset(degrees, frequencies,train_mode = False)
return degree_multiset
def save_model(self, file_path):
torch.save(self.state_dict(), file_path)
def load_model(self, file_path):
self.load_state_dict(torch.load(file_path))
self.eval()
def relaxed_round(x):
return (x - x.detach()) + x.round()
def reconstruct_multiset(degrees, frequencies, train_mode = False):
# Compute the weighted degrees
degree_multiset = degrees * frequencies
# Round to ensure discrete values (use relaxed_round during training if needed)
if train_mode:
degree_multiset = relaxed_round(degree_multiset)
else:
degree_multiset = degree_multiset.round()
return degree_multiset
def train_vae_decoder_for_degree_sequence(model, graphs, num_epochs, learning_rate, weights):
optimizer = Adam(model.parameters(), lr=learning_rate)
model.train()
max_node = max([graph.num_nodes for graph in graphs])
for epoch in range(num_epochs):
print("Traininig iteration ", epoch)
total_loss = 0
for graph in graphs:
optimizer.zero_grad()
degrees, frequencies, mean, logvar, set_size = model(graph)
# Reconstruct the multiset
recon_multiset = reconstruct_multiset(degrees, frequencies, train_mode = True)
# Compute the loss
loss = loss_function(recon_multiset, graph.x, mean, logvar, weights)
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {total_loss / len(graphs):.4f}")
def loss_function(recon_multiset, target_multiset, mean, logvar, weights):
recon_weight, kl_weight = weights.get('reconstruction', 1.0), weights.get('kl_divergence', 1.0)
erdos_gallai_weight = weights.get('erdos_gallai', 1.0)
max_size = max(recon_multiset.size(0), target_multiset.size(0))
recon_multiset = F.pad(recon_multiset, (0, max_size - recon_multiset.size(0)))
target_multiset = F.pad(target_multiset, (0, max_size - target_multiset.size(0)))
recon_loss = torch.sum((recon_multiset - target_multiset) ** 2)
kl_loss = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp())
erdos_gallai_loss = 0.0
degree_sequence = recon_multiset.sum(dim=0).sort(descending=True).values
for k in range(1, len(degree_sequence) + 1):
lhs = torch.sum(degree_sequence[:k])
rhs = k * (k - 1) + torch.sum(torch.min(degree_sequence[k:], torch.tensor(k, dtype=torch.float)))
if lhs > rhs:
erdos_gallai_loss += (lhs - rhs) ** 2
return recon_weight * recon_loss + kl_weight * kl_loss + erdos_gallai_weight * erdos_gallai_loss
def compute_chamfer_distance(set1, set2):
"""
Compute Chamfer Distance between two sets, ensuring it works for sets of different sizes.
"""
if set1.size(0) == 0 or set2.size(0) == 0:
return float('inf') # If one of the sets is empty, the distance is undefined.
dists_1_to_2 = torch.min(torch.cdist(set1, set2, p=2), dim=1).values
dists_2_to_1 = torch.min(torch.cdist(set2, set1, p=2), dim=1).values
chamfer_distance = torch.sum(dists_1_to_2) + torch.sum(dists_2_to_1)
return chamfer_distance
def compute_earth_movers_distance(set1, set2):
"""
Compute Earth Mover's Distance (EMD) between two sets, ensuring compatibility for different sizes.
"""
if set1.size(0) == 0 or set2.size(0) == 0:
return float('inf') # Undefined if one of the sets is empty.
cost_matrix = torch.cdist(set1, set2, p=2).cpu().numpy()
row_ind, col_ind = linear_sum_assignment(cost_matrix)
emd = cost_matrix[row_ind, col_ind].sum()
return emd
def compute_coverage(reference_sets, generated_sets):
"""
Compute coverage percentage of generated sets matching the reference sets.
"""
coverage_count = 0
for ref_set in reference_sets:
if ref_set.size(0) == 0:
continue
distances = [compute_chamfer_distance(ref_set, gen_set) for gen_set in generated_sets if gen_set.size(0) > 0]
if distances and min(distances) < 1e-4: # Threshold for coverage match
coverage_count += 1
return (coverage_count / len(reference_sets)) * 100 if len(reference_sets) > 0 else 0
def compute_1nn_accuracy(reference_sets, generated_sets):
"""
Compute 1-NN accuracy for distinguishing reference sets from generated sets.
"""
if not reference_sets or not generated_sets:
return 0.0
distances = []
labels = []
for ref_set in reference_sets:
if ref_set.size(0) == 0:
continue
for gen_set in generated_sets:
if gen_set.size(0) > 0:
distances.append(compute_chamfer_distance(ref_set, gen_set))
labels.append(0) # Reference label
for i, gen_set1 in enumerate(generated_sets):
if gen_set1.size(0) == 0:
continue
for j, gen_set2 in enumerate(generated_sets):
if i != j and gen_set2.size(0) > 0:
distances.append(compute_chamfer_distance(gen_set1, gen_set2))
labels.append(1) # Generated label
if not distances:
return 0.0
distances = torch.tensor(distances)
labels = torch.tensor(labels)
nearest_indices = torch.argmin(distances.view(len(reference_sets), -1), dim=1)
correct_predictions = torch.sum(labels[nearest_indices] == 0)
return (correct_predictions / len(reference_sets)) * 100 if len(reference_sets) > 0 else 0
def evaluate_generated_multisets(model, graphs, num_samples):
model.eval()
with torch.no_grad():
generated_degrees = model.generate(num_samples)
generated_sets = [gen.unsqueeze(0) for gen in generated_degrees if gen.size(0) > 0]
reference_degrees = [graph.x.sum(dim=0, keepdim=True) for graph in graphs]
reference_sets = [ref.unsqueeze(0) for ref in reference_degrees if ref.size(0) > 0]
chamfer_distances = [compute_chamfer_distance(ref, gen) for ref in reference_sets for gen in generated_sets]
avg_chamfer_distance = sum(chamfer_distances) / len(chamfer_distances) if chamfer_distances else float('inf')
#emd_distances = [compute_earth_movers_distance(ref, gen) for ref in reference_sets for gen in generated_sets]
#avg_emd_distance = sum(emd_distances) / len(emd_distances) if emd_distances else float('inf')
coverage = compute_coverage(reference_sets, generated_sets)
one_nn_accuracy = compute_1nn_accuracy(reference_sets, generated_sets)
degree_validities = []
for degree_sequence in generated_degrees:
if degree_sequence.size(0) == 0:
continue
sorted_degrees = degree_sequence.sort(descending=True).values
is_valid = True
for k in range(1, len(sorted_degrees) + 1):
lhs = torch.sum(sorted_degrees[:k])
rhs = k * (k - 1) + torch.sum(torch.min(sorted_degrees[k:], torch.tensor(k, dtype=torch.float)))
if lhs > rhs:
is_valid = False
break
degree_validities.append(is_valid)
validity_percentage = (sum(degree_validities) / len(degree_validities)) * 100 if len(degree_validities) > 0 else 0
return {
"Chamfer Distance": avg_chamfer_distance,
#"Earth Mover's Distance": avg_emd_distance,
"Coverage (%)": coverage,
"1-NN Accuracy (%)": one_nn_accuracy,
"Degree Validity (%)": validity_percentage
}
def load_graph_from_file(file_path, max_nodes):
"""
Load a graph from a single file and apply one-hot encoding.
The file format should be compatible with NetworkX's read functions.
"""
try:
graph = nx.read_edgelist(file_path, nodetype=int)
graph = nx.convert_node_labels_to_integers(graph)
x = F.one_hot(torch.tensor([graph.degree[n] for n in range(graph.number_of_nodes())]),
num_classes=max_nodes).float()
x = x.sum(dim=0, keepdim=True)
batch = torch.zeros(max_nodes, dtype=torch.long)
return Data(x=x, batch=batch)
except Exception as e:
print(f"Error loading graph from {file_path}: {e}")
return None
def create_graph_data_from_directory(directory_path):
graphs = []
max_nodes = 0
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
if os.path.isfile(file_path):
graph = nx.read_edgelist(file_path, nodetype=int)
max_nodes = max(max_nodes, graph.number_of_nodes())
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
if os.path.isfile(file_path):
graph = load_graph_from_file(file_path, max_nodes)
if graph is not None:
graphs.append(graph)
return graphs, max_nodes
def main():
parser = argparse.ArgumentParser(description='MS-VAE for Graph Generation')
parser.add_argument('--dataset-dir', type=str, required=True, help='Path to the directory containing graph files')
parser.add_argument('--config-file', type=str, required=True, help='Path to the configuration file in TOML format')
parser.add_argument('--output-model', type=str, help='Path to save the trained model')
parser.add_argument('--input-model', type=str, help='Path to load a pre-trained model')
args = parser.parse_args()
config_dir = Path("configs")
dataset_dir = Path("datasets")
model_dir = Path("models")
dataset_dir = dataset_dir / args.dataset_dir
config_file = config_dir / args.config_file
config = toml.load(config_file)
graphs, max_node = create_graph_data_from_directory(dataset_dir)
if len(graphs) == 0:
print("No valid graph files found in the directory.")
return
hidden_dim = config['training']['hidden_dim']
latent_dim = config['training']['latent_dim']
input_dim = max_node # input dimension matches one-hot encoded degrees
model = MSVAE(max_input_dim=input_dim, hidden_dim=hidden_dim, latent_dim=latent_dim)
if args.input_model:
model.load_model(model_dir / args.input_model)
print(f"Model loaded from {args.input_model}")
else:
num_epochs = config['training']['num_epochs']
learning_rate = config['training']['learning_rate']
weights = config['training']['weights']
train_vae_decoder_for_degree_sequence(model, graphs, num_epochs, learning_rate, weights)
if args.output_model:
model.save_model(model_dir / args.output_model)
print(f"Model saved to {args.output_model}")
if config['inference']['generate_samples'] > 0:
generated_degrees = model.generate(config['inference']['generate_samples'])
if config['inference']['evaluate']:
evaluation_metrics = evaluate_generated_multisets(model, graphs, config['inference']['generate_samples'])
for metric, value in evaluation_metrics.items():
print(f"{metric}: {value:.4f}")
if __name__ == "__main__":
main()