diff --git a/test/unittest/unittest_nntrainer_modelfile.cpp b/test/unittest/unittest_nntrainer_modelfile.cpp index 6149056205..8d9031c9d6 100644 --- a/test/unittest/unittest_nntrainer_modelfile.cpp +++ b/test/unittest/unittest_nntrainer_modelfile.cpp @@ -302,8 +302,8 @@ static nntrainer::IniSection conv2d_shape("conv2d_shape", "stride = 1,1 |" "padding = 0,0 |"); -static nntrainer::IniSection input2d("inputlayer", "Type = input |" - "Input_Shape = 3:100:100"); +static nntrainer::IniSection input2d("inputlayer2d", "Type = input |" + "Input_Shape = 3:100:100"); static nntrainer::IniSection backbone_random("block1", "backbone = random.ini"); @@ -508,7 +508,8 @@ TEST(nntrainerIniTest, backbone_04_p) { // ScopedIni backbone_made( // "backbone_made", {nw_base_cross, sgd, input2d, // I("block1") + backbone_valid + -// "input_layers=inputlayer", I("block2") + backbone_valid +// "input_layers=inputlayer2d", I("block2") + +// backbone_valid // + "input_layers=block1", I("block3") + backbone_valid + // "input_layers=block2", I("block4") + backbone_valid + // "input_layers=block3"}); @@ -529,7 +530,7 @@ TEST(nntrainerIniTest, backbone_04_p) { // // std::string conv2d_orig_name = conv2d.getName(); // ScopedIni direct_made( // "direct_made", {nw_base_cross, sgd, input2d, -// I("block1conv2d") + conv2d + "input_layers=inputlayer", +// I("block1conv2d") + conv2d + "input_layers=inputlayer2d", // I("block2conv2d") + conv2d + "input_layers=block1conv2d", // I("block3conv2d") + conv2d + "input_layers=block2conv2d", // I("block4conv2d") + conv2d + @@ -667,15 +668,15 @@ TEST(nntrainerIniTest, backbone_17_p) { ScopedIni full( "backbone_17_p_full", - {nw_base_mse, adam, input2d, backbone_valid + "input_layers=inputlayer"}); + {nw_base_mse, adam, input2d, backbone_valid + "input_layers=inputlayer2d"}); EXPECT_EQ(NN_full.loadFromConfig(full.getIniName()), ML_ERROR_NONE); EXPECT_EQ(NN_full.compile(), ML_ERROR_NONE); EXPECT_EQ(NN_full.initialize(), ML_ERROR_NONE); - ScopedIni scaled( - "backbone_17_p_scaled", - {nw_base_mse, adam, input2d, backbone_scaled + "input_layers=inputlayer"}); + ScopedIni scaled("backbone_17_p_scaled", + {nw_base_mse, adam, input2d, + backbone_scaled + "input_layers=inputlayer2d"}); EXPECT_EQ(NN_scaled.loadFromConfig(scaled.getIniName()), ML_ERROR_NONE); EXPECT_EQ(NN_scaled.compile(), ML_ERROR_NONE); @@ -690,7 +691,7 @@ TEST(nntrainerIniTest, backbone_17_p) { // TEST(nntrainerIniTest, backbone_18_n) { // nntrainer::NeuralNetwork NN; -// ScopedIni base("base", {input2d, conv2d + "input_layers=inputlayer", +// ScopedIni base("base", {input2d, conv2d + "input_layers=inputlayer2d", // flatten + "input_layers=conv2d"}); // ScopedIni backbone("Backbone_18_n", // {nw_base_mse, adam, input, @@ -705,19 +706,19 @@ TEST(nntrainerIniTest, backbone_17_p) { * @note Input layer name not found, empty backbone * @todo fix this testcase to check unknown input layer name */ -// TEST(nntrainerIniTest, backbone_19_n) { -// nntrainer::NeuralNetwork NN; +TEST(nntrainerIniTest, backbone_19_n) { + nntrainer::NeuralNetwork NN; -// ScopedIni base("base", {input2d, conv2d + "input_layers=inputlayer", -// batch_normal + "input_layers=conv2d"}); + ScopedIni base("base", {input2d, conv2d + "input_layers=inputlayer2d", + batch_normal + "input_layers=conv2d"}); -// ScopedIni backbone("backbone_19_n", -// {nw_base_mse, adam, input, -// backbone_valid_inout + "input_layers=inputlayer"}); + ScopedIni backbone("backbone_19_n", + {nw_base_mse, adam, input, + backbone_valid_inout + "input_layers=inputlayer"}); -// EXPECT_EQ(NN.loadFromConfig(backbone.getIniName()), -// ML_ERROR_INVALID_PARAMETER); -// } + EXPECT_EQ(NN.loadFromConfig(backbone.getIniName()), + ML_ERROR_INVALID_PARAMETER); +} /** * @brief Ini file unittest with backbone @@ -725,23 +726,22 @@ TEST(nntrainerIniTest, backbone_17_p) { * @todo C++ exception with description "Failed to initialize: in size + padding * is smaller than effective kernel" thrown in the test body. */ -// TEST(nntrainerIniTest, backbone_20_p) { -// nntrainer::NeuralNetwork NN; +TEST(nntrainerIniTest, backbone_20_p) { + nntrainer::NeuralNetwork NN; -// ScopedIni base("base", -// {input2d, conv2d + "input_layers=inputlayer", -// flatten + "input_layers=conv2d", out + -// "input_layers=flat"}); + ScopedIni base("base", + {input2d, conv2d + "input_layers=inputlayer2d", + flatten + "input_layers=conv2d", out + "input_layers=flat"}); -// ScopedIni backbone("backbone_20_p", -// {nw_base_mse, adam, input, -// backbone_valid_inout + "input_layers=inputlayer"}); + ScopedIni backbone("backbone_20_p", + {nw_base_mse, adam, input, + backbone_valid_inout + "input_layers=inputlayer"}); -// EXPECT_EQ(NN.loadFromConfig(backbone.getIniName()), ML_ERROR_NONE); -// EXPECT_EQ(NN.compile(), ML_ERROR_NONE); -// EXPECT_EQ(NN.initialize(), ML_ERROR_NONE); -// EXPECT_EQ(NN.size(), 6u); -// } + EXPECT_EQ(NN.loadFromConfig(backbone.getIniName()), ML_ERROR_NONE); + EXPECT_EQ(NN.compile(), ML_ERROR_NONE); + EXPECT_EQ(NN.initialize(), ML_ERROR_NONE); + EXPECT_EQ(NN.size(), 10u); +} /** * @brief backbone is relative to original ini, if working directory is not set,