-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
80 lines (70 loc) · 2.57 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import pandas as pd
#Loads data for DT's
def loadTreeData():
#Train data
train_x = pd.read_csv('Data/train_x.csv').values
train_x = train_x[:,1:]
train_y = pd.read_csv('Data/train_y.csv', index_col=0).values
#Dev data
dev_x = pd.read_csv('Data/dev_x.csv').values
dev_x = dev_x[:,1:]
dev_y = pd.read_csv('Data/dev_y.csv', index_col=0).values
#Test data
test_x = pd.read_csv('Data/test_x.csv')
test_x = test_x.values[:,1:]
test_y = pd.read_csv('Data/test_y.csv', index_col=0).values
return train_x, train_y, dev_x, dev_y, test_x, test_y
def loadMinYearScale():
data = pd.read_csv('Data/min_year_scale_factor.csv', header=None).values
min_year = data[0][0]
scale_factor = data[1][0]
return min_year, scale_factor
#Loads data for linreg (adds intercept and max-normalizes)
def loadLinRegData(pad=True):
#Train data
train_x = pd.read_csv('Data/train_x.csv').values
train_x, x_max = max_normalize(train_x)
if pad: train_x[:,0] = 1
else: train_x = train_x[:,1:]
train_y = pd.read_csv('Data/train_y.csv', index_col=0).values
train_y, y_max = max_normalize(train_y)
#Dev data
dev_x = pd.read_csv('Data/dev_x.csv').values
dev_x,_ = max_normalize(dev_x, x_max)
if pad: dev_x[:,0] = 1
else: dev_x = dev_x[:,1:]
dev_y = pd.read_csv('Data/dev_y.csv', index_col=0).values
dev_y,_ = max_normalize(dev_y, y_max)
#Test data
test_x = pd.read_csv('Data/test_x.csv').values
test_x,_= max_normalize(test_x, x_max)
if pad: test_x[:,0] = 1
else: test_x = test_x[:,1:]
test_y = pd.read_csv('Data/test_y.csv', index_col=0).values
test_y,_ = max_normalize(test_y, y_max)
return train_x, train_y, dev_x, dev_y, test_x, test_y, x_max, y_max
#Helper to normalize a data frame
def max_normalize(data, data_max=None):
if np.any(data_max) == None: data_max = np.max(data, axis=0)
data = data/data_max
return data, data_max
def inflationScale(years, data, scale_factor, min_year):
scaled = np.zeros(data.shape)
for i, row in enumerate(data):
diff = years[i] - min_year
scaled[i] = data[i] / (scale_factor**diff)
return scaled
def inflationUnscale(years, data, scale_factor, min_year):
scaled = np.zeros(data.shape)
for i, row in enumerate(data):
diff = years[i] - min_year
scaled[i] = data[i] * (scale_factor**diff)
return scaled
#Evaluate MSE
def findMSE(preds, y):
err = preds.reshape(y.shape) - y
return np.mean(err**2)
#Evaluate RMSE
def findRMSE(preds, y):
return np.sqrt(findMSE(preds, y))