-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
392 lines (332 loc) · 14.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model utilities."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import sys
import numpy as np
import tensorflow as tf
from tensorflow.contrib.tpu.python.ops import tpu_ops
from tensorflow.contrib.tpu.python.tpu import tpu_function
def build_learning_rate(initial_lr,
global_step,
steps_per_epoch=None,
lr_decay_type='exponential',
decay_factor=0.97,
decay_epochs=2.4,
total_steps=None,
warmup_epochs=5):
"""Build learning rate."""
if lr_decay_type == 'exponential':
assert steps_per_epoch is not None
decay_steps = steps_per_epoch * decay_epochs
lr = tf.train.exponential_decay(
initial_lr, global_step, decay_steps, decay_factor, staircase=True)
elif lr_decay_type == 'cosine':
assert total_steps is not None
lr = 0.5 * initial_lr * (
1 + tf.cos(np.pi * tf.cast(global_step, tf.float32) / total_steps))
elif lr_decay_type == 'constant':
lr = initial_lr
else:
assert False, 'Unknown lr_decay_type : %s' % lr_decay_type
if warmup_epochs:
tf.logging.info('Learning rate warmup_epochs: %d' % warmup_epochs)
warmup_steps = int(warmup_epochs * steps_per_epoch)
warmup_lr = (
initial_lr * tf.cast(global_step, tf.float32) / tf.cast(
warmup_steps, tf.float32))
lr = tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr)
return lr
def build_optimizer(learning_rate,
optimizer_name='rmsprop',
decay=0.9,
epsilon=0.001,
momentum=0.9):
"""Build optimizer."""
if optimizer_name == 'sgd':
tf.logging.info('Using SGD optimizer')
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
elif optimizer_name == 'momentum':
tf.logging.info('Using Momentum optimizer')
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate, momentum=momentum)
elif optimizer_name == 'rmsprop':
tf.logging.info('Using RMSProp optimizer')
optimizer = tf.train.RMSPropOptimizer(learning_rate, decay, momentum,
epsilon)
else:
tf.logging.fatal('Unknown optimizer:', optimizer_name)
return optimizer
class TpuBatchNormalization(tf.layers.BatchNormalization):
# class TpuBatchNormalization(tf.layers.BatchNormalization):
"""Cross replica batch normalization."""
def __init__(self, fused=False, **kwargs):
if fused in (True, None):
raise ValueError('TpuBatchNormalization does not support fused=True.')
super(TpuBatchNormalization, self).__init__(fused=fused, **kwargs)
def _cross_replica_average(self, t, num_shards_per_group):
"""Calculates the average value of input tensor across TPU replicas."""
num_shards = tpu_function.get_tpu_context().number_of_shards
group_assignment = None
if num_shards_per_group > 1:
if num_shards % num_shards_per_group != 0:
raise ValueError('num_shards: %d mod shards_per_group: %d, should be 0'
% (num_shards, num_shards_per_group))
num_groups = num_shards // num_shards_per_group
group_assignment = [[
x for x in range(num_shards) if x // num_shards_per_group == y
] for y in range(num_groups)]
return tpu_ops.cross_replica_sum(t, group_assignment) / tf.cast(
num_shards_per_group, t.dtype)
def _moments(self, inputs, reduction_axes, keep_dims):
"""Compute the mean and variance: it overrides the original _moments."""
shard_mean, shard_variance = super(TpuBatchNormalization, self)._moments(
inputs, reduction_axes, keep_dims=keep_dims)
num_shards = tpu_function.get_tpu_context().number_of_shards or 1
if num_shards <= 8: # Skip cross_replica for 2x2 or smaller slices.
num_shards_per_group = 1
else:
num_shards_per_group = max(8, num_shards // 8)
tf.logging.info('TpuBatchNormalization with num_shards_per_group %s',
num_shards_per_group)
if num_shards_per_group > 1:
# Compute variance using: Var[X]= E[X^2] - E[X]^2.
shard_square_of_mean = tf.math.square(shard_mean)
shard_mean_of_square = shard_variance + shard_square_of_mean
group_mean = self._cross_replica_average(
shard_mean, num_shards_per_group)
group_mean_of_square = self._cross_replica_average(
shard_mean_of_square, num_shards_per_group)
group_variance = group_mean_of_square - tf.math.square(group_mean)
return (group_mean, group_variance)
else:
return (shard_mean, shard_variance)
class BatchNormalization(tf.layers.BatchNormalization):
"""Fixed default name of BatchNormalization to match TpuBatchNormalization."""
def __init__(self, name='tpu_batch_normalization', **kwargs):
super(BatchNormalization, self).__init__(name=name, **kwargs)
def drop_connect(inputs, is_training, drop_connect_rate):
"""Apply drop connect."""
if not is_training:
return inputs
# Compute keep_prob
# TODO(tanmingxing): add support for training progress.
keep_prob = 1.0 - drop_connect_rate
# Compute drop_connect tensor
batch_size = tf.shape(inputs)[0]
random_tensor = keep_prob
random_tensor += tf.random_uniform([batch_size, 1, 1, 1], dtype=inputs.dtype)
binary_tensor = tf.floor(random_tensor)
output = tf.div(inputs, keep_prob) * binary_tensor
return output
def archive_ckpt(ckpt_eval, ckpt_objective, ckpt_path):
"""Archive a checkpoint if the metric is better."""
ckpt_dir, ckpt_name = os.path.split(ckpt_path)
saved_objective_path = os.path.join(ckpt_dir, 'best_objective.txt')
saved_objective = float('-inf')
if tf.gfile.Exists(saved_objective_path):
with tf.gfile.GFile(saved_objective_path, 'r') as f:
saved_objective = float(f.read())
if saved_objective > ckpt_objective:
tf.logging.info('Ckpt %s is worse than %s', ckpt_objective, saved_objective)
return False
filenames = tf.gfile.Glob(ckpt_path + '.*')
if filenames is None:
tf.logging.info('No files to copy for checkpoint %s', ckpt_path)
return False
# Clear the old folder.
dst_dir = os.path.join(ckpt_dir, 'archive')
if tf.gfile.Exists(dst_dir):
tf.gfile.DeleteRecursively(dst_dir)
tf.gfile.MakeDirs(dst_dir)
# Write checkpoints.
for f in filenames:
dest = os.path.join(dst_dir, os.path.basename(f))
tf.gfile.Copy(f, dest, overwrite=True)
ckpt_state = tf.train.generate_checkpoint_state_proto(
dst_dir,
model_checkpoint_path=ckpt_name,
all_model_checkpoint_paths=[ckpt_name])
with tf.gfile.GFile(os.path.join(dst_dir, 'checkpoint'), 'w') as f:
f.write(str(ckpt_state))
with tf.gfile.GFile(os.path.join(dst_dir, 'best_eval.txt'), 'w') as f:
f.write('%s' % ckpt_eval)
# Update the best objective.
with tf.gfile.GFile(saved_objective_path, 'w') as f:
f.write('%f' % ckpt_objective)
tf.logging.info('Copying checkpoint %s to %s', ckpt_path, dst_dir)
return True
def get_ema_vars():
"""Get all exponential moving average (ema) variables."""
ema_vars = tf.trainable_variables() + tf.get_collection('moving_vars')
for v in tf.global_variables():
# We maintain mva for batch norm moving mean and variance as well.
if 'moving_mean' in v.name or 'moving_variance' in v.name:
ema_vars.append(v)
return list(set(ema_vars))
class DepthwiseConv2D(tf.keras.layers.DepthwiseConv2D, tf.layers.Layer):
"""Wrap keras DepthwiseConv2D to tf.layers."""
pass
class EvalCkptDriver(object):
"""A driver for running eval inference.
Attributes:
model_name: str. Model name to eval.
batch_size: int. Eval batch size.
image_size: int. Input image size, determined by model name.
num_classes: int. Number of classes, default to 1000 for ImageNet.
include_background_label: whether to include extra background label.
"""
def __init__(self,
model_name,
batch_size=1,
image_size=224,
num_classes=1000,
include_background_label=False):
"""Initialize internal variables."""
self.model_name = model_name
self.batch_size = batch_size
self.num_classes = num_classes
self.include_background_label = include_background_label
self.image_size = image_size
def restore_model(self, sess, ckpt_dir, enable_ema=True, export_ckpt=None):
"""Restore variables from checkpoint dir."""
sess.run(tf.global_variables_initializer())
checkpoint = tf.train.latest_checkpoint(ckpt_dir)
if enable_ema:
ema = tf.train.ExponentialMovingAverage(decay=0.0)
ema_vars = get_ema_vars()
var_dict = ema.variables_to_restore(ema_vars)
ema_assign_op = ema.apply(ema_vars)
else:
var_dict = get_ema_vars()
ema_assign_op = None
tf.train.get_or_create_global_step()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(var_dict, max_to_keep=1)
saver.restore(sess, checkpoint)
if export_ckpt:
if ema_assign_op is not None:
sess.run(ema_assign_op)
saver = tf.train.Saver(max_to_keep=1, save_relative_paths=True)
saver.save(sess, export_ckpt)
def build_model(self, features, is_training):
"""Build model with input features."""
del features, is_training
raise ValueError('Must be implemented by subclasses.')
def get_preprocess_fn(self):
raise ValueError('Must be implemented by subclsses.')
def build_dataset(self, filenames, labels, is_training):
"""Build input dataset."""
filenames = tf.constant(filenames)
labels = tf.constant(labels)
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
def _parse_function(filename, label):
image_string = tf.read_file(filename)
preprocess_fn = self.get_preprocess_fn()
image_decoded = preprocess_fn(
image_string, is_training, image_size=self.image_size)
image = tf.cast(image_decoded, tf.float32)
return image, label
dataset = dataset.map(_parse_function)
dataset = dataset.batch(self.batch_size)
iterator = dataset.make_one_shot_iterator()
images, labels = iterator.get_next()
return images, labels
def run_inference(self,
ckpt_dir,
image_files,
labels,
enable_ema=True,
export_ckpt=None):
"""Build and run inference on the target images and labels."""
label_offset = 1 if self.include_background_label else 0
with tf.Graph().as_default(), tf.Session() as sess:
images, labels = self.build_dataset(image_files, labels, False)
probs = self.build_model(images, is_training=False)
if isinstance(probs, tuple):
probs = probs[0]
self.restore_model(sess, ckpt_dir, enable_ema, export_ckpt)
prediction_idx = []
prediction_prob = []
for _ in range(len(image_files) // self.batch_size):
out_probs = sess.run(probs)
idx = np.argsort(out_probs)[::-1]
prediction_idx.append(idx[:5] - label_offset)
prediction_prob.append([out_probs[pid] for pid in idx[:5]])
# Return the top 5 predictions (idx and prob) for each image.
return prediction_idx, prediction_prob
def eval_example_images(self,
ckpt_dir,
image_files,
labels_map_file,
enable_ema=True,
export_ckpt=None):
"""Eval a list of example images.
Args:
ckpt_dir: str. Checkpoint directory path.
image_files: List[str]. A list of image file paths.
labels_map_file: str. The labels map file path.
enable_ema: enable expotential moving average.
export_ckpt: export ckpt folder.
Returns:
A tuple (pred_idx, and pred_prob), where pred_idx is the top 5 prediction
index and pred_prob is the top 5 prediction probability.
"""
classes = json.loads(tf.gfile.Open(labels_map_file).read())
pred_idx, pred_prob = self.run_inference(
ckpt_dir, image_files, [0] * len(image_files), enable_ema, export_ckpt)
for i in range(len(image_files)):
print('predicted class for image {}: '.format(image_files[i]))
for j, idx in enumerate(pred_idx[i]):
print(' -> top_{} ({:4.2f}%): {} '.format(j, pred_prob[i][j] * 100,
classes[str(idx)]))
return pred_idx, pred_prob
def eval_imagenet(self, ckpt_dir, imagenet_eval_glob,
imagenet_eval_label, num_images, enable_ema, export_ckpt):
"""Eval ImageNet images and report top1/top5 accuracy.
Args:
ckpt_dir: str. Checkpoint directory path.
imagenet_eval_glob: str. File path glob for all eval images.
imagenet_eval_label: str. File path for eval label.
num_images: int. Number of images to eval: -1 means eval the whole
dataset.
enable_ema: enable expotential moving average.
export_ckpt: export checkpoint folder.
Returns:
A tuple (top1, top5) for top1 and top5 accuracy.
"""
imagenet_val_labels = [int(i) for i in tf.gfile.GFile(imagenet_eval_label)]
imagenet_filenames = sorted(tf.gfile.Glob(imagenet_eval_glob))
if num_images < 0:
num_images = len(imagenet_filenames)
image_files = imagenet_filenames[:num_images]
labels = imagenet_val_labels[:num_images]
pred_idx, _ = self.run_inference(
ckpt_dir, image_files, labels, enable_ema, export_ckpt)
top1_cnt, top5_cnt = 0.0, 0.0
for i, label in enumerate(labels):
top1_cnt += label in pred_idx[i][:1]
top5_cnt += label in pred_idx[i][:5]
if i % 100 == 0:
print('Step {}: top1_acc = {:4.2f}% top5_acc = {:4.2f}%'.format(
i, 100 * top1_cnt / (i + 1), 100 * top5_cnt / (i + 1)))
sys.stdout.flush()
top1, top5 = 100 * top1_cnt / num_images, 100 * top5_cnt / num_images
print('Final: top1_acc = {:4.2f}% top5_acc = {:4.2f}%'.format(top1, top5))
return top1, top5