-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathplot.py
71 lines (49 loc) · 2.15 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import matplotlib.pyplot as plt
import numpy as np
import os
from src.plot_results import Obs_data
from src.plot_results import plotFig
# set para
plotFigure = plotFig()
plotFigure.obs_data.set_t(np.linspace(5,40,36),"Rc")
plotFigure.obs_data.set_t(np.linspace(5,40,36),"Rg")
plotFigure.obs_data.set_t(np.arange(125) * 0.4 - 5.0,"rf")
# set_t for setting the time series
real_data = np.loadtxt("./real_syn")
plotFigure.update_real_data(real_data)
thk_real = np.array([6,6,13,5,10,30,0])
vs_real = np.array([3.2,2.8,3.46,3.3,3.9,4.5,4.7])
#thk_real = np.array([5.,10.,16.,0.0])
#vs_real = np.array([3.1,3.64,3.87,4.5])
plotFigure.update_refmodel(np.hstack((vs_real,thk_real)))
# set the search range of inversion
boundaries = np.ones((len(thk_real)*2,2))
for i in range(len(thk_real)):
boundaries[i,0] = vs_real[i] - vs_real[i]*0.8
boundaries[i,1] = vs_real[i] + vs_real[i]*0.8
if boundaries[i,0] < 1.5:
boundaries[i,0] = 1.5
if boundaries[i,1] > 5:
boundaries[i,1] = 5
boundaries[i + len(thk_real),0] = thk_real[i] - thk_real[i]*0.2
boundaries[i + len(thk_real),1] = thk_real[i] + thk_real[i]*0.2
boundaries[-1,:] = 0.0,2.0
#plotFigure.update_initmodel(np.hstack((vs_init,thk_init)))
figure = plotFigure.plot_bestmodels(np.array([0,80,200]))
# np.array([0,65,200]) means the depth interpolation
# from 0 to 65km, 200 points
plotFigure.savefig(figure,"best_model.jpeg")
figure = plotFigure.plot_best_fit()
plotFigure.savefig(figure,"best_syn_fit.jpeg")
figure = plotFigure.plot_bestmodels_hit(np.array([2,5,100]),np.array([0,80,100]))
# np.array([1.8,4,100]) velocity 1.8km/s ~ 4km/s 100 points
plotFigure.savefig(figure,"best_model_hist.jpeg")
figure = plotFigure.plot_chain_misfit()
plotFigure.savefig(figure,"misfit.jpeg")
figure = plotFigure.plot_best_fit_hist(np.array([-0.2,0.4,100]),np.array([2.5,4,100]),np.array([2,4,100]))
# np.array([-0.1,0.2,100]) amplitude of rf
# np.array([2,3,100]) velocity of Rc
# np.array([1.6,2.4,100]) rg
plotFigure.savefig(figure,"plot_best_fit_hist.jpeg")
figure = plotFigure.plot_var_statisc(boundaries, thk_real, vs_real)
plotFigure.savefig(figure,"static.jpeg")