forked from Hramchenko/diffusion_distiller
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_utils.py
209 lines (179 loc) · 7.43 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import random
import cv2
import matplotlib.pyplot as plt
import numpy as np
from torch import nn
from tqdm import tqdm
from moving_average import moving_average
from strategies import *
@torch.no_grad()
def p_sample_loop(diffusion, noise, extra_args, device, eta=0, samples_to_capture=-1, need_tqdm=True, clip_value=3):
mode = diffusion.net_.training
diffusion.net_.eval()
img = noise
imgs = []
iter_ = reversed(range(diffusion.num_timesteps))
c_step = diffusion.num_timesteps/samples_to_capture
next_capture = c_step
if need_tqdm:
iter_ = tqdm(iter_)
for i in iter_:
img = diffusion.p_sample(
img,
torch.full((img.shape[0],), i, dtype=torch.int64).to(device),
extra_args,
eta=eta,
clip_value=clip_value
)
if diffusion.num_timesteps - i > next_capture:
imgs.append(img)
next_capture += c_step
imgs.append(img)
diffusion.net_.train(mode)
return imgs
def make_none_args(img, label, device):
return {}
def default_iter_callback(N, loss, last=False):
None
def make_visualization_(diffusion, device, image_size, need_tqdm=False, eta=0, clip_value=1.2):
extra_args = {}
noise = torch.randn(image_size, device=device)
imgs = p_sample_loop(diffusion, noise, extra_args, "cuda", samples_to_capture=5, need_tqdm=need_tqdm, eta=eta, clip_value=clip_value)
images_ = []
for images in imgs:
images = images.split(1, dim=0)
images = torch.cat(images, -1)
images_.append(images)
images_ = torch.cat(images_, 2)
return images_
def make_visualization(diffusion, device, image_size, need_tqdm=False, eta=0, clip_value=1.2):
images_ = make_visualization_(diffusion, device, image_size, need_tqdm=need_tqdm, eta=eta, clip_value=clip_value)
images_ = images_[0].permute(1, 2, 0).cpu().numpy()
images_ = (255 * (images_ + 1) / 2).clip(0, 255).astype(np.uint8)
return images_
def make_iter_callback(diffusion, device, checkpoint_path, image_size, tensorboard, log_interval, ckpt_interval, need_tqdm=False):
state = {
"initialized": False,
"last_log": None,
"last_ckpt": None
}
def iter_callback(N, loss, last=False):
from datetime import datetime
t = datetime.now()
if True:
tensorboard.add_scalar("loss", loss, N)
if not state["initialized"]:
state["initialized"] = True
state["last_log"] = t
state["last_ckpt"] = t
return
if ((t - state["last_ckpt"]).total_seconds() / 60 > ckpt_interval) or last:
torch.save({"G": diffusion.net_.state_dict(), "n_timesteps": diffusion.num_timesteps, "time_scale": diffusion.time_scale}, os.path.join(checkpoint_path, f"checkpoint.pt"))
print("Saved.")
state["last_ckpt"] = t
if ((t - state["last_log"]).total_seconds() / 60 > log_interval) or last:
images_ = make_visualization(diffusion, device, image_size, need_tqdm)
images_ = cv2.cvtColor(images_, cv2.COLOR_BGR2RGB)
tensorboard.add_image("visualization", images_, global_step=N, dataformats='HWC')
tensorboard.flush()
state["last_log"] = t
return iter_callback
class InfinityDataset(torch.utils.data.Dataset):
def __init__(self, dataset, L):
self.dataset = dataset
self.L = L
def __getitem__(self, item):
idx = random.randint(0, len(self.dataset) - 1)
r = self.dataset[idx]
return r
def __len__(self):
return self.L
def make_condition(img, label, device):
return {}
class DiffusionTrain:
def __init__(self, scheduler):
self.scheduler = scheduler
def train(self, train_loader, diffusion, model_ema, model_lr, device, make_extra_args=make_none_args, on_iter=default_iter_callback):
scheduler = self.scheduler
total_steps = len(train_loader)
scheduler.init(diffusion, model_lr, total_steps)
diffusion.net_.train()
print(f"Training...")
pbar = tqdm(train_loader)
N = 0
L_tot = 0
for img, label in pbar:
scheduler.zero_grad()
img = img.to(device)
time = torch.randint(0, diffusion.num_timesteps, (img.shape[0],), device=device)
extra_args = make_extra_args(img, label, device)
loss = diffusion.p_loss(img, time, extra_args)
L_tot += loss.item()
N += 1
pbar.set_description(f"Loss: {L_tot / N}")
loss.backward()
nn.utils.clip_grad_norm_(diffusion.net_.parameters(), 1)
scheduler.step()
moving_average(diffusion.net_, model_ema)
on_iter(N, loss.item())
if scheduler.stop(N, total_steps):
break
on_iter(N, loss.item(), last=True)
class DiffusionDistillation:
def __init__(self, scheduler):
self.scheduler = scheduler
def train_student_debug(self, distill_train_loader, teacher_diffusion, student_diffusion, student_ema, student_lr, device, make_extra_args=make_none_args, on_iter=default_iter_callback):
total_steps = len(distill_train_loader)
scheduler = self.scheduler
scheduler.init(student_diffusion, student_lr, total_steps)
teacher_diffusion.net_.eval()
student_diffusion.net_.train()
print(f"Distillation...")
pbar = tqdm(distill_train_loader)
N = 0
L_tot = 0
for img, label in pbar:
scheduler.zero_grad()
img = img.to(device)
time = 2 * torch.randint(0, student_diffusion.num_timesteps, (img.shape[0],), device=device)
extra_args = make_extra_args(img, label, device)
loss = teacher_diffusion.distill_loss(student_diffusion, img, time, extra_args)
L = loss.item()
L_tot += L
N += 1
pbar.set_description(f"Loss: {L_tot / N}")
loss.backward()
scheduler.step()
moving_average(student_diffusion.net_, student_ema)
if scheduler.stop(N, total_steps):
break
on_iter(N, loss.item())
on_iter(N, loss.item(), last=True)
def train_student(self, distill_train_loader, teacher_diffusion, student_diffusion, student_ema, student_lr, device, make_extra_args=make_none_args, on_iter=default_iter_callback):
scheduler = self.scheduler
total_steps = len(distill_train_loader)
scheduler.init(student_diffusion, student_lr, total_steps)
teacher_diffusion.net_.eval()
student_diffusion.net_.train()
print(f"Distillation...")
pbar = tqdm(distill_train_loader)
N = 0
L_tot = 0
for img, label in pbar:
scheduler.zero_grad()
img = img.to(device)
time = 2 * torch.randint(0, student_diffusion.num_timesteps, (img.shape[0],), device=device)
extra_args = make_extra_args(img, label, device)
loss = teacher_diffusion.distill_loss(student_diffusion, img, time, extra_args)
L = loss.item()
L_tot += L
N += 1
pbar.set_description(f"Loss: {L_tot / N}")
loss.backward()
scheduler.step()
moving_average(student_diffusion.net_, student_ema)
if scheduler.stop(N, total_steps):
break
on_iter(N, loss.item())
on_iter(N, loss.item(), last=True)