-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoptions.py
110 lines (99 loc) · 7.08 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import json
import os
import random
import numpy as np
import torch
from genericpath import exists
class Options:
def __init__(self):
self.parser = argparse.ArgumentParser(description="Options")
self.parser.add_argument('--phase', type=str, default='test_tea', help='phase', choices=['train_tea', 'test_tea', 'train_stu', 'test_stu'])
self.parser.add_argument('--dataset', type=str, default='pitts', help='choose dataset.')
self.parser.add_argument('--structDir', type=str, default='pittsburgh/structure', help='Path for structure.')
self.parser.add_argument('--imgDir', type=str, default='pittsburgh', help='Path for images.')
self.parser.add_argument('--com', type=str, default='', help='comment')
self.parser.add_argument('--height', type=int, default=224, help='number of sequence to use.')
self.parser.add_argument('--width', type=int, default=224, help='number of sequence to use.')
self.parser.add_argument('--net', type=str, default='tscm', help='network')
self.parser.add_argument('--trainer', type=str, default='trainer', help='trainer')
self.parser.add_argument('--loss', type=str, default='tri', help='triplet loss or bayesian triplet loss', choices=['tri', 'cont', 'quad'])
self.parser.add_argument('--margin', type=float, default=0.1, help='Margin for triplet loss. Default=0.1')
self.parser.add_argument('--margin2', type=float, default=0.1, help='Margin2 for quadruplet loss. Default=0.1')
self.parser.add_argument('--output_dim', type=int, default=0, help='Number of feature dimension. Default=512')
self.parser.add_argument('--sigma_dim', type=int, default=0, help='Number of sigma dimension. Default=512')
self.parser.add_argument('--batchSize', type=int, default=8, help='Number of triplets (query, pos, negs). Each triplet consists of 12 images.')
self.parser.add_argument('--cacheBatchSize', type=int, default=128, help='Batch size for caching and testing')
self.parser.add_argument('--cacheRefreshRate', type=int, default=0, help='How often to refresh cache, in number of queries. 0 for off')
self.parser.add_argument('--nEpochs', type=int, default=200, help='number of epochs to train for')
self.parser.add_argument('--nGPU', type=int, default=1, help='number of GPU to use.')
self.parser.add_argument('--cGPU', type=int, default=2, help='core of GPU to use.')
self.parser.add_argument('--optim', type=str, default='adam', help='optimizer to use', choices=['sgd', 'adam'])
self.parser.add_argument('--lr', type=float, default=1e-5, help='Learning Rate.')
self.parser.add_argument('--lrStep', type=float, default=5, help='Decay LR ever N steps.')
self.parser.add_argument('--lrGamma', type=float, default=0.99, help='Multiply LR by Gamma for decaying.')
self.parser.add_argument('--weightDecay', type=float, default=0.001, help='Weight decay for SGD.')
self.parser.add_argument('--momentum', type=float, default=0.9, help='Momentum for SGD.')
self.parser.add_argument('--cuda', action='store_false', help='use cuda')
self.parser.add_argument('--d', action='store_true', help='debug mode')
self.parser.add_argument('--threads', type=int, default=8, help='Number of threads for each data loader to use')
self.parser.add_argument('--seed', type=int, default=1234, help='Random seed to use.')
self.parser.add_argument('--logsPath', type=str, default='./logs', help='Path to save runs to.')
self.parser.add_argument('--runsPath', type=str, default='not defined', help='Path to save runs to.')
self.parser.add_argument('--resume', type=str, default='', help='Path to load checkpoint from, for resuming training or testing.')
self.parser.add_argument('--evalEvery', type=int, default=1, help='Do a validation set run, and save, every N epochs.')
self.parser.add_argument('--cacheRefreshEvery', type=int, default=1, help='refresh embedding cache, every N epochs.')
self.parser.add_argument('--patience', type=int, default=10, help='Patience for early stopping. 0 is off.')
self.parser.add_argument('--split', type=str, default='val', help='Split to use', choices=['val', 'test'])
self.parser.add_argument('--encoder_dim', type=int, default=512, help='Number of feature dimension. Default=512')
def parse(self):
options = self.parser.parse_args()
return options
def update_opt_from_json(self, flag_file, options):
if not exists(flag_file):
raise ValueError('{} not exist'.format(flag_file))
# restore_var = ['runsPath', 'net', 'seqLen', 'num_clusters', 'output_dim', 'structDir', 'imgDir', 'lrStep', 'lrGamma', 'weightDecay', 'momentum', 'num_clusters', 'optim', 'margin', 'seed', 'patience']
do_not_update_list = ['resume', 'mode', 'phase', 'optim', 'split']
if os.path.exists(flag_file):
with open(flag_file, 'r') as f:
# stored_flags = {'--' + k: str(v) for k, v in json.load(f).items() if k in restore_var}
stored_flags = {'--' + k: str(v) for k, v in json.load(f).items() if k not in do_not_update_list}
to_del = []
for flag, val in stored_flags.items():
for act in self.parser._actions:
if act.dest == flag[2:]: # stored parser match current parser
# store_true / store_false args don't accept arguments, filter these
if type(act.const) == type(True):
if val == str(act.default):
to_del.append(flag)
else:
stored_flags[flag] = ''
else:
if val == str(act.default):
to_del.append(flag)
for flag, val in stored_flags.items():
missing = True
for act in self.parser._actions:
if flag[2:] == act.dest:
missing = False
if missing:
to_del.append(flag)
for flag in to_del:
del stored_flags[flag]
train_flags = [x for x in list(sum(stored_flags.items(), tuple())) if len(x) > 0]
print('restored flags:', train_flags)
options = self.parser.parse_args(train_flags, namespace=options)
return options
class FixRandom:
def __init__(self, seed) -> None:
self.seed = seed
torch.manual_seed(self.seed)
random.seed(self.seed)
np.random.seed(self.seed)
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
def seed_worker(self):
worker_seed = self.seed
np.random.seed(worker_seed)
random.seed(worker_seed)