-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpedselect.py
238 lines (218 loc) · 7.94 KB
/
pedselect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) 2017, New York Genome Center
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the <organization> nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Pedselect v0.1
# March 30 2017
# select most informative individuals to sequence from a pedigree to maximise coverage (and power) of phenotyped individuals
# single input file: "IID FATHER MOTHER SEX GENO DNA PHENO"
# defult - consider six generations
def make_dicts(ped_file):
# make dictionary of ind:[father,mother] and ind:[child1,child2...]
ped_dict = {i.split()[0]:[i.split()[1],i.split()[2]] for i in open(ped_file,'r')}
parent_dict = {i:ped_dict[i] for i in ped_dict if not "0" in ped_dict[i]}
spouse_dict = {}
children_dict = {}
for i in ped_dict:
[father,mother] = ped_dict[i]
for parent in [father,mother]:
if parent != "0":
if parent in children_dict:
children_dict[parent].append(i)
else:
children_dict[parent] = [i]
if father in spouse_dict:
spouse_dict[father].append(mother)
else:
spouse_dict[father] = [mother]
if mother in spouse_dict:
spouse_dict[mother].append(father)
else:
spouse_dict[mother] = [father]
for i in spouse_dict:
spouse_dict[i] = list(set(spouse_dict[i]))
return [parent_dict,children_dict,spouse_dict]
# get only parents and children
def get_first(ind,parent_dict,children_dict):
rels = []
if ind in parent_dict:
rels = rels + parent_dict[ind]
if ind in children_dict:
rels = rels + children_dict[ind]
return rels
def get_score(ind,rounds,parent_dict,children_dict,geno_inds):
# go down s generations - children of children etc.
geno_rels_dict = {i:[] for i in rounds}
all_rels_dict = {i:[] for i in rounds}
all_rels_dict[0] = [ind]
seen_rels = []
inds = [ind]
for i in rounds:
new_inds = []
for j in inds:
if j in geno_inds:
continue
if j in children_dict:
children = children_dict[j]
for k in children:
new_inds.append(k)
all_rels_dict[i].append(k)
if k in geno_inds:
geno_rels_dict[i].append(k)
inds = new_inds[:]
seen_rels = seen_rels + inds
# go up (and down) s generations
inds = [ind]
if ind in parent_dict:
parents = parent_dict[ind]
all_rels_dict[1] = all_rels_dict[1] + parents
if parents[0] in geno_inds:
geno_rels_dict[1].append(parents[0])
if parents[1] in geno_inds:
geno_rels_dict[1].append(parents[1])
inds = parents[:]
for i in rounds[1:]:
new_inds = []
for j in inds:
if j in geno_inds:
continue
if j in children_dict:
children = children_dict[j]
for k in children:
if k in seen_rels:
continue
all_rels_dict[i].append(k)
new_inds.append(k)
if k in geno_inds:
geno_rels_dict[i].append(k)
if j in parent_dict:
parents = parent_dict[j]
for k in parents:
if k in seen_rels:
continue
all_rels_dict[i].append(k)
new_inds.append(k)
if k in geno_inds:
geno_rels_dict[i].append(k)
inds = new_inds[:]
seen_rels = seen_rels + inds
for i in rounds:
all_rels_dict[i] = list(set(all_rels_dict[i]))
geno_rels_dict[i] = list(set(geno_rels_dict[i]))
score = 0.0
for i in rounds:
c = 1.0/2**(i-1)
score = score + c * len(geno_rels_dict[i])
return [score,geno_rels_dict,all_rels_dict]
import sys
def main():
# default maximum number of meiosis events to consider
mei = 2
# number of inds to choose for sequencing
n_sel = 100
# pedigree file
ped_file = "vz.txt"
args = sys.argv[1:]
for i in range(len(args)):
if args[i] == "-m":
mei = int(args[i+1])
if args[i] == "-n":
n_sel = int(args[i+1])
if args[i] == "-p":
ped_file = args[i+1]
rounds = range(1,mei + 1)
geno_inds = []
dna_inds = []
pheno_inds = []
for i in open(ped_file,'r'):
line = i.split()
ind = line[0]
if line[4] == "1":
geno_inds.append(ind)
if line[5] == "1":
dna_inds.append(ind)
if line[6] == "1":
pheno_inds.append(ind)
[parent_dict,children_dict,spouse_dict] = make_dicts(ped_file)
# do one round of trimming bottom - remove inds without children and uninform from parent_dict
#del_inds = []
#for i in parent_dict:
# if not i in children_dict:
# if not i in geno_inds + dna_inds + pheno_inds:
# del_inds.append(i)
#for i in del_inds:
# del parent_dict[i]
# first round:
# get scores of inds with pheno and dna but no geno
# do sequentially - assume selected inds are genotyped in subsequent rounds
picked = []
pheno_no_geno = [i for i in pheno_inds if not i in geno_inds and i in dna_inds and not i in picked]
pheno_no_geno_no_dna = [i for i in pheno_inds if not i in geno_inds and not i in dna_inds]
dna_no_geno_no_pheno = [i for i in dna_inds if not i in pheno_inds and not i in geno_inds]
for cc in range(len(pheno_no_geno)):
pheno_no_geno = [i for i in pheno_inds if not i in geno_inds and i in dna_inds and not i in picked]
scores = []
for ind in pheno_no_geno + pheno_no_geno_no_dna:
score = get_score(ind,rounds,parent_dict,children_dict,geno_inds)[0]
scores.append(score)
min_score = min(scores[:len(pheno_no_geno)])
min_score_i = [i for i in range(len(scores)) if scores[i] == min_score and i < len(pheno_no_geno)]
best_i = min_score_i[0]
best_score = sum(scores) - min_score
for i in min_score_i:
temp_ind = pheno_no_geno[i]
temp_scores = []
for ind in pheno_no_geno + pheno_no_geno_no_dna:
if ind == pheno_no_geno[i]:
continue
temp_scores.append(get_score(ind,rounds,parent_dict,children_dict,geno_inds + picked + [temp_ind])[0])
if sum(temp_scores) >= best_score:
best_score = sum(temp_scores)
best_i = i
# print str(sum(temp_scores)) + " " + temp_ind
#print "Adding " + pheno_no_geno[best_i] + " (" + str(best_score) + ") to list"
print pheno_no_geno[best_i] + " (score of remaining individuals = " + str(best_score) + ")"
geno_inds.append(pheno_no_geno[best_i])
picked.append(pheno_no_geno[best_i])
# second round
# assume picked ids are sequenced
# select remaining inds with genotypes but not phenotypes based on ability to impute pheno_no_geno_no_dna
prev_best_score = 0.0
for cc in range(len(pheno_no_geno_no_dna)):
best_score = 0.0
best_ind = "NA"
for ind in dna_no_geno_no_pheno:
if ind in picked:
continue
scores = [get_score(i,rounds,parent_dict,children_dict,geno_inds + picked + [ind])[0] for i in pheno_no_geno_no_dna]
if sum(scores) >= best_score:
best_score = sum(scores)
best_ind = ind
if best_score == prev_best_score:
break
picked.append(best_ind)
#print "Adding " + best_ind + " (" + str(best_score) + ") to list"
print best_ind + " (score of remaining individuals = " + str(best_score) + ")"
prev_best_score = best_score
if __name__ == "__main__":
main()