-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdata_nli.py
176 lines (155 loc) · 6.27 KB
/
data_nli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import re
import cPickle
import copy
import numpy
import torch
import nltk
from nltk.corpus import ptb
from nltk import Tree
word_tags = ['CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNS', 'NNP', 'NNPS', 'PDT',
'POS', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ',
'WDT', 'WP', 'WP$', 'WRB']
currency_tags_words = ['#', '$', 'C$', 'A$']
ellipsis = ['*', '*?*', '0', '*T*', '*ICH*', '*U*', '*RNR*', '*EXP*', '*PPA*', '*NOT*']
punctuation_tags = ['.', ',', ':', '-LRB-', '-RRB-', '\'\'', '``']
punctuation_words = ['.', ',', ':', '-LRB-', '-RRB-', '\'\'', '``', '--', ';', '-', '?', '!', '...', '-LCB-', '-RCB-']
file_ids = ptb.fileids()
train_file_ids = []
valid_file_ids = []
test_file_ids = []
rest_file_ids = []
for id in file_ids:
if 'WSJ/00/WSJ_0000.MRG' <= id <= 'WSJ/24/WSJ_2499.MRG':
train_file_ids.append(id)
elif 'WSJ/22/WSJ_2200.MRG' <= id <= 'WSJ/22/WSJ_2299.MRG':
valid_file_ids.append(id)
elif 'WSJ/23/WSJ_2300.MRG' <= id <= 'WSJ/23/WSJ_2399.MRG':
test_file_ids.append(id)
elif 'WSJ/00/WSJ_0000.MRG' <= id <= 'WSJ/01/WSJ_0199.MRG' or 'WSJ/24/WSJ_2400.MRG' <= id <= 'WSJ/24/WSJ_2499.MRG':
rest_file_ids.append(id)
data_path = '/misc/vlgscratch4/BowmanGroup/pmh330/datasets/'
train_files = data_path + 'all_nli/all_nli_train.jsonl'
valid_files = data_path + 'all_nli/all_nli_valid.jsonl'
test_files_snli = data_path + 'snli_1.0/snli_1.0_test.jsonl'
test_files_mnli_match = data_path + 'multinli_1.0/multinli_1.0_dev_matched.jsonl'
class Dictionary(object):
def __init__(self):
self.word2idx = {'<unk>': 0}
self.idx2word = ['<unk>']
self.word2frq = {}
def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.word2idx[word] = len(self.idx2word) - 1
if word not in self.word2frq:
self.word2frq[word] = 1
else:
self.word2frq[word] += 1
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
def __getitem__(self, item):
if self.word2idx.has_key(item):
return self.word2idx[item]
else:
return self.word2idx['<unk>']
def rebuild_by_freq(self, thd=3):
self.word2idx = {'<unk>': 0}
self.idx2word = ['<unk>']
for k, v in self.word2frq.iteritems():
if v >= thd and (not k in self.idx2word):
self.idx2word.append(k)
self.word2idx[k] = len(self.idx2word) - 1
print 'Number of words:', len(self.idx2word)
return len(self.idx2word)
class Corpus(object):
def __init__(self, path):
dict_file_name = os.path.join(path, 'dict_nli.pkl')
if os.path.exists(dict_file_name):
self.dictionary = cPickle.load(open(dict_file_name, 'rb'))
print("loading: ", dict_file_name)
else:
self.dictionary = Dictionary()
self.add_words(train_files)
self.add_words(valid_files)
self.add_words(test_files_snli)
self.add_words(test_files_mnli_match)
self.dictionary.rebuild_by_freq()
cPickle.dump(self.dictionary, open(dict_file_name, 'wb'))
self.train, self.train_sens, self.train_trees = self.tokenize(train_files)
self.valid, self.valid_sens, self.valid_trees = self.tokenize(valid_files)
self.test_snli, self.test_snli_sens, self.test_snli_trees = self.tokenize(test_files_snli)
self.test_mnli, self.test_mnli_sens, self.test_mnli_trees = self.tokenize(test_files_mnli_match)
self.test, self.test_sens, self.test_trees = self.tokenize(test_file_ids)
def filter_words(self, tree):
words = []
for w, tag in tree.pos():
if tag in word_tags:
w = w.lower()
w = re.sub('[0-9]+', 'N', w)
# if tag == 'CD':
# w = 'N'
words.append(w)
return words
def add_words(self, file_name):
# Add words to the dictionary
f_in = open(file_name, 'r')
for line in f_in:
if line.strip() == '':
continue
data = eval(line)
sen_tree = Tree.fromstring(data['sentence1_parse'])
words = self.filter_words(sen_tree)
words = ['<s>'] + words + ['</s>']
for word in words:
self.dictionary.add_word(word)
sen_tree = Tree.fromstring(data['sentence2_parse'])
words = self.filter_words(sen_tree)
words = ['<s>'] + words + ['</s>']
for word in words:
self.dictionary.add_word(word)
f_in.close()
def tokenize(self, file_name):
def tree2list(tree):
if isinstance(tree, nltk.Tree):
if tree.label() in word_tags:
return tree.leaves()[0]
else:
root = []
for child in tree:
c = tree2list(child)
if c != []:
root.append(c)
if len(root) > 1:
return root
elif len(root) == 1:
return root[0]
return []
sens_idx = []
sens = []
sentences = []
trees = []
f_in = open(file_name, 'r')
for line in f_in:
if line.strip() == '':
continue
data = eval(line)
sentences = []
sentences.append(Tree.fromstring(data['sentence1_parse']))
sentences.append(Tree.fromstring(data['sentence2_parse']))
for sen_tree in sentences:
words = self.filter_words(sen_tree)
if not words:
continue
words = ['<s>'] + words + ['</s>']
# if len(words) > 50:
# continue
sens.append(words)
idx = []
for word in words:
idx.append(self.dictionary[word])
sens_idx.append(torch.LongTensor(idx))
trees.append(tree2list(sen_tree))
f_in.close()
return sens_idx, sens, trees