-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathparse_data.py
executable file
·122 lines (102 loc) · 3.87 KB
/
parse_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
import copy
import numpy
import torch
from torch.autograd import Variable
from hinton import plot
import json
#import matplotlib.pyplot as plt
#import data_nli as data
#import data
import data_ptb as data
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = numpy.exp(x - numpy.max(x, axis=1, keepdims=True))
return e_x / e_x.sum(axis=1, keepdims=True)
numpy.set_printoptions(precision=2, suppress=True, linewidth=5000)
parser = argparse.ArgumentParser(description='PyTorch NLI Language Model')
# Model parameters.
parser.add_argument('--data', type=str, default='./data/nli_data',
help='location of the data corpus')
parser.add_argument('--checkpoint', type=str, default='./model_old/model.pt',
help='model checkpoint to use')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--eval_data', type=str, default='../datasets/snli_1.0/snli_1.0_dev.jsonl')
parser.add_argument('--save_eval_path', type=str, default='../datasets/PRPN_parsed_0328/parsed_snli_dev.jsonl')
#parser.add_argument('--eval_multinli_matched', type=str, default='../datasets/multinli_1.0/')
args = parser.parse_args()
def build_tree(depth, sen):
assert len(depth) == len(sen)
if len(depth) == 1:
parse_tree = sen[0]
else:
idx_max = numpy.argmax(depth)
parse_tree = []
if len(sen[:idx_max]) > 0:
tree0 = build_tree(depth[:idx_max], sen[:idx_max])
parse_tree.append(tree0)
tree1 = sen[idx_max]
if len(sen[idx_max+1:]) > 0:
tree2 = build_tree(depth[idx_max+1:], sen[idx_max+1:])
tree1 = [tree1, tree2]
if parse_tree == []:
parse_tree = tree1
else:
parse_tree.append(tree1)
return parse_tree
def MRG(tr):
if isinstance(tr, str):
#return '(' + tr + ')'
return tr + ' '
else:
s = '( '
for subtr in tr:
s += MRG(subtr)
s += ') '
return s
def process_text(text):
text = text.replace('(', '').replace(')', '')
return text
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
with open(args.checkpoint, 'rb') as f:
model = torch.load(f)
model.eval()
print model
model.cpu()
corpus = data.Corpus(args.data)
ntokens = len(corpus.dictionary)
input = Variable(torch.rand(1, 1).mul(ntokens).long(), volatile=True)
f_out = open(args.save_eval_path, 'w')
with open(args.eval_data) as eval_file:
for example_idx, line in enumerate(eval_file):
#if example_idx < 9943:
# continue
parsed_example = {}
example = eval(line)
s1_parsed = process_text(example['sentence1_binary_parse'])
s2_parsed = process_text(example['sentence2_binary_parse'])
sent1 = s1_parsed.strip().split()
sent2 = s2_parsed.strip().split()
x = numpy.array([corpus.dictionary[w.lower()] for w in sent1])
input = Variable(torch.LongTensor(x[:, None]))
hidden = model.init_hidden(1)
_, hidden = model(input, hidden)
gates = model.gates.squeeze().data.numpy()
parse_tree = build_tree(gates, sent1)
parsed_example['sentence1'] = sent1
parsed_example['sent1_tree'] = MRG(parse_tree)
x = numpy.array([corpus.dictionary[w.lower()] for w in sent2])
input = Variable(torch.LongTensor(x[:, None]))
hidden = model.init_hidden(1)
_, hidden = model(input, hidden)
gates = model.gates.squeeze().data.numpy()
parse_tree = build_tree(gates, sent2)
parsed_example['sentence2'] = sent2
parsed_example['sent2_tree'] = MRG(parse_tree)
parsed_example['example_id'] = example['pairID']
#print(parsed_example)
json_str = json.dumps(parsed_example) + '\n'
f_out.write(json_str)
f_out.close()