-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathtmc.ml
1150 lines (1039 loc) · 41.8 KB
/
tmc.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Frédéric Bour *)
(* Gabriel Scherer, projet Partout, INRIA Saclay *)
(* Basile Clément, projet Cambium, INRIA Paris *)
(* *)
(* Copyright 2020 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
open Lambda
(* Error-reporting information for ambiguous TMC calls *)
type tmc_call_information = {
loc: scoped_location;
explicit: bool;
}
type subterm_information = {
tmc_calls: tmc_call_information list;
}
type ambiguous_arguments = {
explicit: bool;
(** When [explicit = true], we have an ambiguity between
arguments containing calls that have been explicitly
marked [@tailcall]. Otherwise we have an ambiguity
between un-annotated calls. *)
arguments: subterm_information list;
}
type error =
| Ambiguous_constructor_arguments of ambiguous_arguments
| Tmc_local_returning
exception Error of Location.t * error
type 'offset destination = {
var: Ident.t;
offset: 'offset;
loc : Debuginfo.Scoped_location.t;
}
and offset = Offset of lambda
(** In the OCaml value model, interior pointers are not allowed. To
represent the "placeholder to mutate" in DPS code, we thus use a pair
of the block containing the placeholder, and the offset of the
placeholder within the block.
In the common case, this offset is an arbitrary lambda expression, typically
a constant integer or a variable. We define ['a destination] as parametrized
over the offset type to represent formal destination parameters (where
the offset is an Ident.t), and maybe in the future statically-known
offsets (where the offset is an integer).
*)
let offset_code (Offset t) = t
let add_dst_params ({var; offset} : Ident.t destination) params =
{ name = var ; layout = Lambda.layout_block ;
attributes = Lambda.default_param_attribute ; mode = alloc_heap } ::
{ name = offset ; layout = Lambda.layout_int ;
attributes = Lambda.default_param_attribute ; mode = alloc_heap } ::
params
let add_dst_args ({var; offset} : offset destination) args =
Lvar var :: offset_code offset :: args
let assign_to_dst {var; offset; loc} lam =
Lprim(Psetfield_computed(Pointer, Heap_initialization),
[Lvar var; offset_code offset; lam], loc)
module Constr : sig
(** The type [Constr.t] represents a reified constructor with
a single hole, which can be either directly applied to a [lambda]
term, or be used to create a fresh [lambda destination] with
a placeholder. *)
type t = {
tag : int;
flag: Lambda.mutable_flag;
shape : block_shape;
before: lambda list;
after: lambda list;
loc : Debuginfo.Scoped_location.t;
}
(** [apply constr e] plugs the expression [e] in the hole of the
constructor [const]. *)
val apply : t -> lambda -> lambda
(** [with_placeholder constr body] binds a placeholder
for the constructor [constr] within the scope of [body]. *)
val with_placeholder : t -> (offset destination -> lambda) -> lambda
(** We may want to delay the application of a constructor to a later
time. This may move the constructor application below some
effectful expressions (for example if we move into a context of
the form [foo; bar_with_tmc_inside]), and we want to preserve
the evaluation order of the other arguments of the
constructor. So we bind them before proceeding, unless they are
obviously side-effect free.
[delay_impure ~block_id constr body] binds all inpure arguments
of the constructor [constr] within the scope of [body], which is
passed a pure constructor.
[block_id] is a counter that is used as a suffix in the generated
variable names, for readability purposes. *)
val delay_impure : block_id:int -> t -> (t -> lambda) -> lambda
end = struct
type t = {
tag : int;
flag: Lambda.mutable_flag;
shape : block_shape;
before: lambda list;
after: lambda list;
loc : Debuginfo.Scoped_location.t;
}
let apply constr t =
let block_args = List.append constr.before @@ t :: constr.after in
Lprim (Pmakeblock (constr.tag, constr.flag, constr.shape, alloc_heap),
block_args, constr.loc)
let tmc_placeholder =
(* we choose a placeholder whose tagged representation will be
reconizable. *)
Lambda.dummy_constant
let with_placeholder constr (body : offset destination -> lambda) =
let k_with_placeholder =
apply { constr with flag = Mutable } tmc_placeholder in
let placeholder_pos = List.length constr.before in
let placeholder_pos_lam = Lconst (Const_base (Const_int placeholder_pos)) in
let block_var = Ident.create_local "block" in
Llet (Strict, Lambda.layout_block, block_var, k_with_placeholder,
body {
var = block_var;
offset = Offset placeholder_pos_lam ;
loc = constr.loc;
})
let delay_impure : block_id:int -> t -> (t -> lambda) -> lambda =
let bind_list ~block_id ~arg_offset lambdas k =
let can_be_delayed =
(* Note that the delayed subterms will be used
exactly once in the linear-static subterm. So
we are happy to delay constants, which we would
not want to duplicate. *)
function
| Lvar _ | Lconst _ -> true
| _ -> false in
let bindings, args =
lambdas
|> List.mapi (fun i lam ->
if can_be_delayed lam then (None, lam)
else begin
let v = Ident.create_local
(Printf.sprintf "block%d_arg%d" block_id (arg_offset + i)) in
(Some (v, lam), Lvar v)
end)
|> List.split in
let body = k args in
List.fold_right (fun binding body ->
match binding with
| None -> body
| Some (v, lam) -> Llet(Strict, Lambda.layout_tmc_field, v, lam, body)
) bindings body in
fun ~block_id constr body ->
bind_list ~block_id ~arg_offset:0 constr.before @@ fun vbefore ->
let arg_offset = List.length constr.before + 1 in
bind_list ~block_id ~arg_offset constr.after @@ fun vafter ->
body { constr with before = vbefore; after = vafter }
end
(** The type ['a Dps.t] (destination-passing-style) represents a
version of ['a] that is parametrized over a [lambda destination].
A [lambda Dps.t] is a code fragment in destination-passing-style,
a [(lambda * lambda) Dps.t] represents two subterms parametrized
over the same destination. *)
module Dps : sig
type 'a dps = tail:bool -> dst:offset destination -> 'a
(** A term parameterized over a destination. The [tail] argument
is passed by the caller to indicate whether the term will be placed
in tail-position -- this allows to generate correct @tailcall
annotations. *)
type 'a t
val make : lambda dps -> lambda t
val run : lambda t -> lambda dps
val delay_constructor : Constr.t -> lambda t -> lambda t
val lambda : lambda -> lambda t
val map : ('a -> 'b) -> 'a t -> 'b t
val pair : 'a t -> 'b t -> ('a * 'b) t
val unit : unit t
end = struct
type 'a dps = tail:bool -> dst:offset destination -> 'a
type 'a t = {
code : delayed:Constr.t list -> 'a dps;
delayed_use_count : int;
}
(** We want to optimize nested constructors, for example:
{[
(x () :: y () :: tmc call)
]}
which would naively generate (in a DPS context parametrized
over a location dst.i):
{[
let dstx = x () :: Placeholder in
dst.i <- dstx;
let dsty = y () :: Placeholder in
dstx.1 <- dsty;
tmc dsty.1 call
]}
when we would rather hope for
{[
let vx = x () in
let dsty = y () :: Placeholder in
dst.i <- vx :: dsty;
tmc dsty.1 call
]}
The idea is that the unoptimized version first creates a
destination site [dstx], which is then used by the following
code. If we keep track of the current destination:
{[
(* Destination is [dst.i] *)
let dstx = x () :: Placeholder in
dst.i (* Destination *) <- dstx;
(* Destination is [dstx.1] *)
let dsty = y () :: Placeholder in
dstx.1 (* Destination *) <- dsty;
(* Destination is [dsty.1] *)
tmc dsty.1 call
]}
Instead of binding the whole newly-created destination, we can
simply let-bind the non-placeholder arguments (in order to
preserve execution order), and keep track of a list of blocks to
be created along with the current destination. Instead of seeing
a DPS fragment as writing to a destination, we see it as a term
with shape [dst.i <- C .] where [C .] is a linear context consisting
only of constructor applications.
{[
(* Destination is [dst.i <- C .] *)
let vx = x () in
(* Destination is [dst.i <- C (vx :: .)] *)
let vy = y () in
(* Destination is [dst.i <- C (vx :: vy :: .)] *)
(* Making a call: reify the destination *)
let dsty = vy :: Placeholder in
dst.i <- vx :: dsty;
tmc dsty.1 call
]}
The [delayed] argument represents the context [C] as a list of
reified constructors, to allow both to build the final holey
block ([vy :: Placeholder]) at the recursive call site, and
the delayed constructor applications ([vx :: dsty]).
In practice, it is not desirable to perform this simplification
when there are multiple TMC calls (e.g. in different branches of
an [if] block), because it would cause duplication of the nested
constructor applications. The [delayed_use_count] field keeps track
of this information, it counts the number of syntactic use sites
of the delayed constructors, if any, in the generated code.
*)
let write_to_dst dst delayed t =
assign_to_dst dst @@
List.fold_left (fun t constr -> Constr.apply constr t) t delayed
let lambda (v : lambda) : lambda t = {
code = (fun ~delayed ~tail:_ ~dst ->
write_to_dst dst delayed v
);
delayed_use_count = 1;
}
(** Create a new destination-passing-style term which is simply
setting the destination with the given [v], hence "returning"
it.
*)
let unit : unit t = {
code = (fun ~delayed:_ ~tail:_ ~dst:_ ->
()
);
delayed_use_count = 0;
}
let map (f : 'a -> 'b) (d : 'a t) : 'b t = {
code = (fun ~delayed ~tail ~dst ->
f @@ d.code ~delayed ~tail ~dst);
delayed_use_count = d.delayed_use_count;
}
let pair (da : 'a t) (db : 'b t) : ('a * 'b) t = {
code = (fun ~delayed ~tail ~dst ->
(da.code ~delayed ~tail ~dst, db.code ~delayed ~tail ~dst));
delayed_use_count =
da.delayed_use_count + db.delayed_use_count;
}
let run (d : 'a t) : 'a dps =
fun ~tail ~dst ->
d.code ~tail ~dst ~delayed:[]
let reify_delay (dps : lambda dps) : lambda t = {
code = (fun ~delayed ~tail ~dst ->
match delayed with
| [] -> dps ~tail ~dst
| x :: xs ->
Constr.with_placeholder x @@ fun new_dst ->
Lsequence (
write_to_dst dst xs (Lvar new_dst.var),
dps ~tail ~dst:new_dst)
);
delayed_use_count = 1;
}
let ensures_affine (d : lambda t) : lambda t =
if d.delayed_use_count <= 1 then
d
else
reify_delay (run d)
(** Ensures that the resulting term does not duplicate delayed
constructors by reifying them now if needed.
*)
let make (dps : 'a dps) : 'a t =
reify_delay dps
let delay_constructor constr d =
let d = ensures_affine d in {
code = (fun ~delayed ~tail ~dst ->
let block_id = List.length delayed in
Constr.delay_impure ~block_id constr @@ fun constr ->
d.code ~tail ~dst ~delayed:(constr :: delayed));
delayed_use_count = d.delayed_use_count;
}
end
(** The TMC transformation requires information flows in two opposite
directions: the information of which callsites can be rewritten in
destination-passing-style flows from the leaves of the code to the
root, and the information on whether we remain in tail-position
flows from the root to the leaves -- and also the knowledge of
which version of the function we currently want to generate, the
direct version or a destination-passing-style version.
To clarify this double flow of information, we split the TMC
transform in two steps:
1. A function [choice t] that takes a term and processes it from
leaves to root; it produces a "code choice", a piece of data of
type [lambda Choice.t], that contains information on how to transform the
input term [t] *parameterized* over the (still missing) contextual
information.
2. Code-production operators that have contextual information
to transform a "code choice" into the final code.
The code-production choices for a single term have type [lambda Choice.t];
using a parametrized type ['a Choice.t] is useful to represent
simultaneous choices over several subterms; for example
[(lambda * lambda) Choice.t] makes a choice for a pair of terms,
for example the [then] and [else] cases of a conditional. With
this parameter, ['a Choice.t] has an applicative structure, which
is useful to write the actual code transformation in the {!choice}
function.
*)
module Choice = struct
type 'a t = {
dps : 'a Dps.t;
direct : unit -> 'a;
tmc_calls : tmc_call_information list;
benefits_from_dps: bool;
explicit_tailcall_request: bool;
}
(**
An ['a Choice.t] represents code that may be written
in destination-passing style if its usage context allows it.
More precisely:
- If the surrounding context is already in destination-passing
style, it has a destination available, we should produce the
code in [dps] -- a function parametrized over the destination.
- If the surrounding context is in direct style (no destination
is available), we should produce the fallback code from
[direct].
(Note: [direct] is also a function (on [unit]) to ensure that any
effects performed during code production will only happen once we
do know that we want to produce the direct-style code.)
- [tmc_calls] tracks the function calls in the subterms that are
in tail-modulo-cons position and get rewritten into tailcalls
in the [dps] version.
- [benefits_from_dps] is true when the [dps] calls strictly more
TMC functions than the [direct] version. See the
{!choice_makeblock} case.
- [explicit_tailcall_request] is true when the user
used a [@tailcall] annotation on the optimizable callsite.
When one of several calls could be optimized, we expect that
exactly one of them will be annotated by the user, or fail
because the situation is ambiguous.
*)
let lambda (v : lambda) : lambda t = {
dps = Dps.lambda v;
direct = (fun () -> v);
tmc_calls = [];
benefits_from_dps = false;
explicit_tailcall_request = false;
}
let map f s = {
dps = Dps.map f s.dps;
direct = (fun () -> f (s.direct ()));
tmc_calls = s.tmc_calls;
benefits_from_dps = s.benefits_from_dps;
explicit_tailcall_request = s.explicit_tailcall_request;
}
(** Apply function [f] to the transformed term. *)
let direct (c : 'a t) : 'a =
c.direct ()
let dps (c : lambda t) ~tail ~dst =
Dps.run c.dps ~tail ~dst
let pair ((c1, c2) : 'a t * 'b t) : ('a * 'b) t = {
dps = Dps.pair c1.dps c2.dps;
direct = (fun () -> (c1.direct (), c2.direct ()));
tmc_calls =
c1.tmc_calls @ c2.tmc_calls;
benefits_from_dps =
c1.benefits_from_dps || c2.benefits_from_dps;
explicit_tailcall_request =
c1.explicit_tailcall_request || c2.explicit_tailcall_request;
}
let unit = {
dps = Dps.unit;
direct = (fun () -> ());
tmc_calls = [];
benefits_from_dps = false;
explicit_tailcall_request = false;
}
(* Remark: we could define [pure v] as [map (fun () -> v) unit],
but we prefer to have the code explicit about using [unit],
in particular as it ignores the destination argument. *)
module Syntax = struct
let (let+) a f = map f a
let (and+) a1 a2 = pair (a1, a2)
end
open Syntax
let option (c : 'a t option) : 'a option t =
match c with
| None -> let+ () = unit in None
| Some c -> let+ v = c in Some v
let rec list (c : 'a t list) : 'a list t =
match c with
| [] -> let+ () = unit in []
| c :: cs ->
let+ v = c
and+ vs = list cs
in v :: vs
(** The [find_*] machinery is used to locate a single subterm to
optimize among a list of subterms. If there are several possible
choices, we require that exactly one of them be annotated with
[@tailcall], or we report an ambiguity. *)
type 'a tmc_call_search =
| No_tmc_call of 'a list
| Nonambiguous of 'a zipper
| Ambiguous of { explicit: bool; subterms: 'a t list; }
and 'a zipper = {
rev_before : 'a list;
choice : 'a t;
after: 'a list
}
let find_nonambiguous_tmc_call choices =
let has_tmc_calls c = c.tmc_calls <> [] in
let is_explicit s = s.explicit_tailcall_request in
let nonambiguous ~only_explicit_calls choices =
(* here is how we will compute the result once we know that there
is an unambiguously-determined tmc call, and whether
an explicit request was necessary to disambiguate *)
let rec split rev_before : 'a t list -> 'a zipper = function
| [] -> assert false (* we know there is at least one choice *)
| c :: rest ->
if has_tmc_calls c && (not only_explicit_calls || is_explicit c) then
{ rev_before; choice = c; after = List.map direct rest }
else
split (direct c :: rev_before) rest
in split [] choices
in
let tmc_call_subterms =
List.filter (fun c -> has_tmc_calls c) choices
in
match tmc_call_subterms with
| [] ->
No_tmc_call (List.map direct choices)
| [ _one ] ->
Nonambiguous (nonambiguous ~only_explicit_calls:false choices)
| several_subterms ->
let explicit_subterms = List.filter is_explicit several_subterms in
begin match explicit_subterms with
| [] ->
Ambiguous {
explicit = false;
subterms = several_subterms;
}
| [ _one ] ->
Nonambiguous (nonambiguous ~only_explicit_calls:true choices)
| several_explicit_subterms ->
Ambiguous {
explicit = true;
subterms = several_explicit_subterms;
}
end
end
open Choice.Syntax
type context = {
specialized: specialized Ident.Map.t;
}
and specialized = {
arity: int;
dps_id: Ident.t;
direct_kind: function_kind;
}
let llets lk vk bindings body =
List.fold_right (fun (var, def) body ->
Llet (lk, vk, var, def, body)
) bindings body
let find_candidate = function
| Lfunction lfun when lfun.attr.tmc_candidate ->
(* TMC does not make sense for local-returning functions *)
begin match lfun.ret_mode with
| Alloc_local ->
raise (Error (Debuginfo.Scoped_location.to_location lfun.loc,
Tmc_local_returning))
| Alloc_heap -> Some lfun
end
| _ -> None
let declare_binding ctx (var, def) =
match find_candidate def with
| None -> ctx
| Some lfun ->
let arity = List.length lfun.params in
let dps_id = Ident.create_local (Ident.name var ^ "_dps") in
let direct_kind = lfun.kind in
let cand = { arity; dps_id; direct_kind; } in
{ specialized = Ident.Map.add var cand ctx.specialized }
let rec choice ctx t =
let rec choice ctx ~tail t =
match t with
| (Lvar _ | Lmutvar _ | Lconst _ | Lfunction _ | Lsend _
| Lassign _ | Lfor _ | Lwhile _) ->
let t = traverse ctx t in
Choice.lambda t
(* [choice_prim] handles most primitives, but the important case
of construction [Lprim(Pmakeblock(...), ...)] is handled by
[choice_makeblock] *)
| Lprim (prim, primargs, loc) ->
choice_prim ctx ~tail prim primargs loc
(* [choice_apply] handles applications, in particular tail-calls which
generate Set choices at the leaves *)
| Lapply apply ->
choice_apply ctx ~tail apply
(* other cases use the [lift] helper that takes the sub-terms in tail
position and the context around them, and generates a choice for
the whole term from choices for the tail subterms. *)
| Lsequence (l1, l2) ->
let l1 = traverse ctx l1 in
let+ l2 = choice ctx ~tail l2 in
Lsequence (l1, l2)
| Lifthenelse (l1, l2, l3, kind) ->
let l1 = traverse ctx l1 in
let+ (l2, l3) = choice_pair ctx ~tail (l2, l3) in
Lifthenelse (l1, l2, l3, kind)
| Lmutlet (vk, var, def, body) ->
(* mutable bindings are not TMC-specialized *)
let def = traverse ctx def in
let+ body = choice ctx ~tail body in
Lmutlet (vk, var, def, body)
| Llet (lk, vk, var, def, body) ->
let ctx, bindings = traverse_let ctx var def in
let+ body = choice ctx ~tail body in
llets lk vk bindings body
| Lletrec (bindings, body) ->
let ctx, bindings = traverse_letrec ctx bindings in
let+ body = choice ctx ~tail body in
Lletrec(bindings, body)
| Lswitch (l1, sw, loc, kind) ->
(* decompose *)
let consts_lhs, consts_rhs = List.split sw.sw_consts in
let blocks_lhs, blocks_rhs = List.split sw.sw_blocks in
(* transform *)
let l1 = traverse ctx l1 in
let+ consts_rhs = choice_list ctx ~tail consts_rhs
and+ blocks_rhs = choice_list ctx ~tail blocks_rhs
and+ sw_failaction = choice_option ctx ~tail sw.sw_failaction in
(* rebuild *)
let sw_consts = List.combine consts_lhs consts_rhs in
let sw_blocks = List.combine blocks_lhs blocks_rhs in
let sw = { sw with sw_consts; sw_blocks; sw_failaction; } in
Lswitch (l1, sw, loc, kind)
| Lstringswitch (l1, cases, fail, loc, kind) ->
(* decompose *)
let cases_lhs, cases_rhs = List.split cases in
(* transform *)
let l1 = traverse ctx l1 in
let+ cases_rhs = choice_list ctx ~tail cases_rhs
and+ fail = choice_option ctx ~tail fail in
(* rebuild *)
let cases = List.combine cases_lhs cases_rhs in
Lstringswitch (l1, cases, fail, loc, kind)
| Lstaticraise (id, ls) ->
let ls = traverse_list ctx ls in
Choice.lambda (Lstaticraise (id, ls))
| Ltrywith (l1, id, l2, kind) ->
(* in [try l1 with id -> l2], the term [l1] is
not in tail-call position (after it returns
we need to remove the exception handler) *)
let+ l1 = choice ctx ~tail:false l1
and+ l2 = choice ctx ~tail l2 in
Ltrywith (l1, id, l2, kind)
| Lstaticcatch (l1, ids, l2, r, kind) ->
(* In [static-catch l1 with ids -> l2],
the term [l1] is in fact in tail-position *)
let+ l1 = choice ctx ~tail l1
and+ l2 = choice ctx ~tail l2 in
Lstaticcatch (l1, ids, l2, r, kind)
| Levent (lam, lev) ->
let+ lam = choice ctx ~tail lam in
Levent (lam, lev)
| Lifused (x, lam) ->
let+ lam = choice ctx ~tail lam in
Lifused (x, lam)
| Lregion (lam, layout) ->
let+ lam = choice ctx ~tail lam in
Lregion (lam, layout)
| Lexclave lam ->
let+ lam = choice ctx ~tail lam in
Lexclave lam
and choice_apply ctx ~tail apply =
let exception No_tmc in
try
let explicit_tailcall_request =
match apply.ap_tailcall with
| Default_tailcall -> false
| Tailcall_expectation true -> true
| Tailcall_expectation false -> raise No_tmc
in
match apply.ap_func with
| Lvar f ->
let specialized =
try Ident.Map.find f ctx.specialized
with Not_found ->
if tail then
Location.prerr_warning
(Debuginfo.Scoped_location.to_location apply.ap_loc)
Warnings.Tmc_breaks_tailcall;
raise No_tmc;
in
let args =
(* Support of tupled functions: the [function_kind] of the
direct-style function is identical to the one of the
input function, which may be Tupled, but the dps
function is always Curried.
[find_exact_application] is in charge of recovering the
"real" argument list of a possibly-tupled call. *)
let kind, arity = specialized.direct_kind, specialized.arity in
match Lambda.find_exact_application kind ~arity apply.ap_args with
| None -> raise No_tmc
| Some args -> args
in
let tailcall tail =
(* If we are calling a tmc-specializable function in tail
context, then both the direct-style and dps-style calls
must be tailcalls. *)
if tail
then Tailcall_expectation true
else Default_tailcall
in
(* This application is in tail position of a region=true function
(or Tmc_local_returning would have occurred), so it must be Heap *)
assert (Lambda.is_heap_mode apply.ap_mode);
{
Choice.dps = Dps.make (fun ~tail ~dst ->
Lapply { apply with
ap_func = Lvar specialized.dps_id;
ap_args = add_dst_args dst args;
ap_tailcall = tailcall tail;
});
direct = (fun () ->
Lapply { apply with ap_tailcall = tailcall tail });
explicit_tailcall_request;
tmc_calls = [{
loc = apply.ap_loc;
explicit = explicit_tailcall_request;
}];
benefits_from_dps = true;
}
| _nontail -> raise No_tmc
with No_tmc ->
let apply_no_bailout =
(* [@tailcall false] is interpreted as a bailout annotation: "we
are (knowingly) leaving the dps calling convention". It only
has sense in the DPS version of the generated code, not in
direct style. *)
let ap_tailcall =
match apply.ap_tailcall with
| Tailcall_expectation false when tail -> Default_tailcall
| other -> other
in
{ apply with ap_tailcall } in
(* The call will not be in tail position, so the close-on-apply flag must
not be set. *)
let ap_region_close =
match apply.ap_region_close with
| Rc_close_at_apply -> Rc_normal
| (Rc_normal | Rc_nontail) as reg_close -> reg_close
in
let apply = { apply with ap_region_close } in
{ (Choice.lambda (Lapply apply)) with
direct = (fun () -> Lapply apply_no_bailout);
}
and choice_makeblock ctx ~tail:_ (tag, flag, shape, mode) blockargs loc =
let choices = List.map (choice ctx ~tail:false) blockargs in
match Choice.find_nonambiguous_tmc_call choices with
| Choice.No_tmc_call args ->
Choice.lambda @@ Lprim (Pmakeblock (tag, flag, shape, mode), args, loc)
| Choice.Ambiguous { explicit; subterms = ambiguous_subterms } ->
(* An ambiguous term should not lead to an error if it not
used in TMC position. Consider for example:
{[
type t = ... | K of t * (t * t)
let[@tail_mod_cons] rec map f = function
| [...]
| K (t, (u, v)) -> K ((map[@tailcall]) f t, (map f u, map f v))
]}
Calling [choice_makeblock] on the K constructor, we need to
determine whether its two arguments are ambiguous, which is
done by calling [choice] on each argument to see if they
would be TMC-able and if they are explicitly annotated.
These calls give the following results:
- there is an explicitly-requested tailcall in the first
argument
- the second argument is a nested pair whose arguments
themselves are ambiguous -- with no explicit annotation.
This determines that the arguments of K are not ambiguous,
as only one of them is annotated. But note that the nested
pair, in isolation, is ambiguous. This inner ambiguity is
innocuous and should not result in an error, as we never
use this inner pair in TMC position, only in direct style.
This example shows that it would be incorrect to fail with
an error whenever [choice] finds an ambiguity. Instead we
only error when generating the [dps] version of the
corresponding code; requesting the [direct] version is
accepted and produces the expected direct code.
*)
let term_choice =
let+ args = Choice.list choices in
Lprim (Pmakeblock(tag, flag, shape, mode), args, loc)
in
{ term_choice with
Choice.dps = Dps.make (fun ~tail:_ ~dst:_ ->
let arguments =
let info (t : lambda Choice.t) : subterm_information = {
tmc_calls = t.tmc_calls;
} in
{
explicit;
arguments = List.map info ambiguous_subterms;
}
in
raise (Error (Debuginfo.Scoped_location.to_location loc,
Ambiguous_constructor_arguments arguments))
);
}
| Choice.Nonambiguous { Choice.rev_before; choice; after } ->
let constr = Constr.{
tag;
flag;
shape;
before = List.rev rev_before;
after;
loc;
} in
assert (choice.tmc_calls <> []);
{
Choice.direct = (fun () ->
if not choice.benefits_from_dps then
Constr.apply constr (Choice.direct choice)
else
Constr.with_placeholder constr @@ fun new_dst ->
Lsequence(Choice.dps choice ~tail:false ~dst:new_dst,
Lvar new_dst.var));
benefits_from_dps =
(* Whether or not the caller provides a destination,
we can always provide a destination to our settable
subterm, so the number of TMC sub-calls is identical
in the [direct] and [dps] versions. *)
false;
dps = Dps.delay_constructor constr choice.dps;
tmc_calls =
choice.tmc_calls;
explicit_tailcall_request =
choice.explicit_tailcall_request;
}
and choice_prim ctx ~tail prim primargs loc =
match prim with
(* The important case is the construction case *)
| Pmakeblock (tag, flag, shape, mode) ->
choice_makeblock ctx ~tail (tag, flag, shape, mode) primargs loc
(* Some primitives have arguments in tail-position *)
| Popaque layout ->
let l1 = match primargs with
| [l1] -> l1
| _ -> invalid_arg "choice_prim" in
let+ l1 = choice ctx ~tail l1 in
Lprim (Popaque layout, [l1], loc)
(* in common cases we just return *)
| Pbytes_to_string | Pbytes_of_string
| Parray_to_iarray | Parray_of_iarray
| Pgetglobal _ | Psetglobal _ | Pgetpredef _
| Pfield _ | Pfield_computed _
| Psetfield _ | Psetfield_computed _
| Pfloatfield _ | Psetfloatfield _
| Pufloatfield _ | Psetufloatfield _
| Pmixedfield _ | Psetmixedfield _
| Pccall _
| Praise _
| Pnot
| Pnegint | Paddint | Psubint | Pmulint | Pdivint _ | Pmodint _
| Pandint | Porint | Pxorint
| Plslint | Plsrint | Pasrint
| Pintcomp _ | Punboxed_int_comp _
| Poffsetint _ | Poffsetref _
| Pintoffloat _ | Pfloatofint (_, _)
| Pfloatoffloat32 _ | Pfloat32offloat _
| Pnegfloat (_, _) | Pabsfloat (_, _)
| Paddfloat (_, _) | Psubfloat (_, _)
| Pmulfloat (_, _) | Pdivfloat (_, _)
| Pfloatcomp (_, _) | Punboxed_float_comp (_, _)
| Pstringlength | Pstringrefu | Pstringrefs
| Pbyteslength | Pbytesrefu | Pbytessetu | Pbytesrefs | Pbytessets
| Parraylength _ | Parrayrefu _ | Parraysetu _ | Parrayrefs _ | Parraysets _
| Parrayblit _
| Pisint _ | Pisnull | Pisout
| Pignore
| Pcompare_ints | Pcompare_floats _ | Pcompare_bints _
| Preinterpret_tagged_int63_as_unboxed_int64
| Preinterpret_unboxed_int64_as_tagged_int63
(* we don't handle effect or DLS primitives *)
| Prunstack | Pperform | Presume | Preperform | Pdls_get
(* we don't handle atomic primitives *)
| Patomic_exchange _ | Patomic_compare_exchange _
| Patomic_compare_set _ | Patomic_fetch_add
| Patomic_add | Patomic_sub | Patomic_land
| Patomic_lor | Patomic_lxor | Patomic_load _ | Patomic_set _
| Punbox_float _ | Pbox_float (_, _)
| Punbox_int _ | Pbox_int _
| Punbox_vector _ | Pbox_vector (_, _)
(* we don't handle array indices as destinations yet *)
| (Pmakearray _ | Pduparray _ | Pmakearray_dynamic _)
(* we don't handle { foo with x = ...; y = recursive-call } *)
| Pduprecord _
(* we don't handle all-float records or mixed blocks. If we
did, we'd need to remove references to Lambda.layout_tmc_field
*)
| Pmakefloatblock _
| Pmakeufloatblock _
| Pmakemixedblock _
(* nor unboxed products *)
| Pmake_unboxed_product _ | Punboxed_product_field _
| Parray_element_size_in_bytes _
| Pobj_dup
| Pobj_magic _
| Pprobe_is_enabled _
(* operations returning boxed values could be considered
constructions someday *)
| Pbintofint _ | Pintofbint _
| Pcvtbint _
| Pnegbint _
| Paddbint _ | Psubbint _ | Pmulbint _ | Pdivbint _ | Pmodbint _
| Pandbint _ | Porbint _ | Pxorbint _ | Plslbint _ | Plsrbint _ | Pasrbint _
| Pbintcomp _
(* more common cases... *)
| Pbigarrayref _ | Pbigarrayset _
| Pbigarraydim _
| Pstring_load_16 _ | Pstring_load_32 _ | Pstring_load_f32 _
| Pstring_load_64 _ | Pstring_load_128 _
| Pbytes_load_16 _ | Pbytes_load_32 _ | Pbytes_load_f32 _
| Pbytes_load_64 _ | Pbytes_load_128 _
| Pbytes_set_16 _ | Pbytes_set_32 _ | Pbytes_set_f32 _
| Pbytes_set_64 _ | Pbytes_set_128 _
| Pbigstring_load_16 _ | Pbigstring_load_32 _ | Pbigstring_load_f32 _
| Pbigstring_load_64 _ | Pbigstring_load_128 _
| Pbigstring_set_16 _ | Pbigstring_set_32 _ | Pbigstring_set_f32 _
| Pbigstring_set_64 _ | Pbigstring_set_128 _
| Pfloatarray_load_128 _
| Pfloat_array_load_128 _
| Pint_array_load_128 _
| Punboxed_float_array_load_128 _
| Punboxed_float32_array_load_128 _
| Punboxed_int32_array_load_128 _
| Punboxed_int64_array_load_128 _
| Punboxed_nativeint_array_load_128 _
| Pfloatarray_set_128 _
| Pfloat_array_set_128 _
| Pint_array_set_128 _
| Punboxed_float_array_set_128 _
| Punboxed_float32_array_set_128 _
| Punboxed_int32_array_set_128 _
| Punboxed_int64_array_set_128 _
| Punboxed_nativeint_array_set_128 _
| Pget_header _
| Pctconst _
| Pbswap16
| Pbbswap _
| Pint_as_pointer _
| Psequand | Psequor
| Ppoll
| Ppeek _ | Ppoke _
->
let primargs = traverse_list ctx primargs in
Choice.lambda (Lprim (prim, primargs, loc))
and choice_list ctx ~tail terms =
Choice.list (List.map (choice ctx ~tail) terms)
and choice_pair ctx ~tail (t1, t2) =
Choice.pair (choice ctx ~tail t1, choice ctx ~tail t2)
and choice_option ctx ~tail t =
Choice.option (Option.map (choice ctx ~tail) t)
in choice ctx t
and traverse ctx = function
| Llet (lk, vk, var, def, body) ->
let ctx, bindings = traverse_let ctx var def in
let body = traverse ctx body in
llets lk vk bindings body
| Lletrec (bindings, body) ->
let ctx, bindings = traverse_letrec ctx bindings in
Lletrec (bindings, traverse ctx body)