-
Notifications
You must be signed in to change notification settings - Fork 23
/
dialogue_management_model.py
46 lines (32 loc) · 1.25 KB
/
dialogue_management_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
from rasa_core.agent import Agent
from rasa_core.channels.console import ConsoleInputChannel
from rasa_core.interpreter import RegexInterpreter
from rasa_core.policies.keras_policy import KerasPolicy
from rasa_core.policies.memoization import MemoizationPolicy
from rasa_core.interpreter import RasaNLUInterpreter
logger = logging.getLogger(__name__)
# Training of Final Model
def train_dialogue(domain_file = "weather_domain.yml",model_path="./models/dialogue",training_data_file="./data/stories.md"):
agent = Agent(domain_file,policies=[MemoizationPolicy(),KerasPolicy()])
agent.train(training_data_file,
max_history=3,
epochs=300,
batch_size=50,
validation_split=0.2,
augmentation_factor=50)
agent.persist(model_path)
return agent
def run_weather_bot(serve_forever=True):
interpreter = RasaNLUInterpreter("./models/nlu/default/weathernlu")
agent = Agent.load("./models/dialogue",interpreter)
if serve_forever:
agent.handle_channel(ConsoleInputChannel())
return agent
if __name__ == "__main__":
train_dialogue()
run_weather_bot()