-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPMATH336_note.html
3204 lines (2682 loc) · 167 KB
/
PMATH336_note.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>README</title>
<style type="text/css">
body {
font-family: Helvetica, arial, sans-serif;
font-size: 14px;
line-height: 1.6;
padding-top: 10px;
padding-bottom: 10px;
background-color: white;
padding: 30px; }
body > *:first-child {
margin-top: 0 !important; }
body > *:last-child {
margin-bottom: 0 !important; }
a {
color: #4183C4; }
a.absent {
color: #cc0000; }
a.anchor {
display: block;
padding-left: 30px;
margin-left: -30px;
cursor: pointer;
position: absolute;
top: 0;
left: 0;
bottom: 0; }
h1, h2, h3, h4, h5, h6 {
margin: 20px 0 10px;
padding: 0;
font-weight: bold;
-webkit-font-smoothing: antialiased;
cursor: text;
position: relative; }
h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor, h5:hover a.anchor, h6:hover a.anchor {
background: url() no-repeat 10px center;
text-decoration: none; }
h1 tt, h1 code {
font-size: inherit; }
h2 tt, h2 code {
font-size: inherit; }
h3 tt, h3 code {
font-size: inherit; }
h4 tt, h4 code {
font-size: inherit; }
h5 tt, h5 code {
font-size: inherit; }
h6 tt, h6 code {
font-size: inherit; }
h1 {
font-size: 28px;
color: black; }
h2 {
font-size: 24px;
border-bottom: 1px solid #cccccc;
color: black; }
h3 {
font-size: 18px; }
h4 {
font-size: 16px; }
h5 {
font-size: 14px; }
h6 {
color: #777777;
font-size: 14px; }
p, blockquote, ul, ol, dl, li, table, pre {
margin: 15px 0; }
hr {
background: transparent url() repeat-x 0 0;
border: 0 none;
color: #cccccc;
height: 4px;
padding: 0;
}
body > h2:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child {
margin-top: 0;
padding-top: 0; }
body > h1:first-child + h2 {
margin-top: 0;
padding-top: 0; }
body > h3:first-child, body > h4:first-child, body > h5:first-child, body > h6:first-child {
margin-top: 0;
padding-top: 0; }
a:first-child h1, a:first-child h2, a:first-child h3, a:first-child h4, a:first-child h5, a:first-child h6 {
margin-top: 0;
padding-top: 0; }
h1 p, h2 p, h3 p, h4 p, h5 p, h6 p {
margin-top: 0; }
li p.first {
display: inline-block; }
li {
margin: 0; }
ul, ol {
padding-left: 30px; }
ul :first-child, ol :first-child {
margin-top: 0; }
dl {
padding: 0; }
dl dt {
font-size: 14px;
font-weight: bold;
font-style: italic;
padding: 0;
margin: 15px 0 5px; }
dl dt:first-child {
padding: 0; }
dl dt > :first-child {
margin-top: 0; }
dl dt > :last-child {
margin-bottom: 0; }
dl dd {
margin: 0 0 15px;
padding: 0 15px; }
dl dd > :first-child {
margin-top: 0; }
dl dd > :last-child {
margin-bottom: 0; }
blockquote {
border-left: 4px solid #dddddd;
padding: 0 15px;
color: #777777; }
blockquote > :first-child {
margin-top: 0; }
blockquote > :last-child {
margin-bottom: 0; }
table {
padding: 0;border-collapse: collapse; }
table tr {
border-top: 1px solid #cccccc;
background-color: white;
margin: 0;
padding: 0; }
table tr:nth-child(2n) {
background-color: #f8f8f8; }
table tr th {
font-weight: bold;
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr td {
border: 1px solid #cccccc;
margin: 0;
padding: 6px 13px; }
table tr th :first-child, table tr td :first-child {
margin-top: 0; }
table tr th :last-child, table tr td :last-child {
margin-bottom: 0; }
img {
max-width: 100%; }
span.frame {
display: block;
overflow: hidden; }
span.frame > span {
border: 1px solid #dddddd;
display: block;
float: left;
overflow: hidden;
margin: 13px 0 0;
padding: 7px;
width: auto; }
span.frame span img {
display: block;
float: left; }
span.frame span span {
clear: both;
color: #333333;
display: block;
padding: 5px 0 0; }
span.align-center {
display: block;
overflow: hidden;
clear: both; }
span.align-center > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: center; }
span.align-center span img {
margin: 0 auto;
text-align: center; }
span.align-right {
display: block;
overflow: hidden;
clear: both; }
span.align-right > span {
display: block;
overflow: hidden;
margin: 13px 0 0;
text-align: right; }
span.align-right span img {
margin: 0;
text-align: right; }
span.float-left {
display: block;
margin-right: 13px;
overflow: hidden;
float: left; }
span.float-left span {
margin: 13px 0 0; }
span.float-right {
display: block;
margin-left: 13px;
overflow: hidden;
float: right; }
span.float-right > span {
display: block;
overflow: hidden;
margin: 13px auto 0;
text-align: right; }
code, tt {
margin: 0 2px;
padding: 0 5px;
white-space: nowrap;
border: 1px solid #eaeaea;
background-color: #f8f8f8;
border-radius: 3px; }
pre code {
margin: 0;
padding: 0;
white-space: pre;
border: none;
background: transparent; }
.highlight pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre {
background-color: #f8f8f8;
border: 1px solid #cccccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px; }
pre code, pre tt {
background-color: transparent;
border: none; }
sup {
font-size: 0.83em;
vertical-align: super;
line-height: 0;
}
* {
-webkit-print-color-adjust: exact;
}
@media screen and (min-width: 914px) {
body {
width: 854px;
margin:0 auto;
}
}
@media print {
table, pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
</style>
<style type="text/css">
/**
* prism.js default theme for JavaScript, CSS and HTML
* Based on dabblet (http://dabblet.com)
* @author Lea Verou
*/
code[class*="language-"],
pre[class*="language-"] {
color: black;
background: none;
text-shadow: 0 1px white;
font-family: Consolas, Monaco, 'Andale Mono', 'Ubuntu Mono', monospace;
text-align: left;
white-space: pre;
word-spacing: normal;
word-break: normal;
word-wrap: normal;
line-height: 1.5;
-moz-tab-size: 4;
-o-tab-size: 4;
tab-size: 4;
-webkit-hyphens: none;
-moz-hyphens: none;
-ms-hyphens: none;
hyphens: none;
}
pre[class*="language-"]::-moz-selection, pre[class*="language-"] ::-moz-selection,
code[class*="language-"]::-moz-selection, code[class*="language-"] ::-moz-selection {
text-shadow: none;
background: #b3d4fc;
}
pre[class*="language-"]::selection, pre[class*="language-"] ::selection,
code[class*="language-"]::selection, code[class*="language-"] ::selection {
text-shadow: none;
background: #b3d4fc;
}
@media print {
code[class*="language-"],
pre[class*="language-"] {
text-shadow: none;
}
}
/* Code blocks */
pre[class*="language-"] {
padding: 1em;
margin: .5em 0;
overflow: auto;
}
:not(pre) > code[class*="language-"],
pre[class*="language-"] {
background: #f5f2f0;
}
/* Inline code */
:not(pre) > code[class*="language-"] {
padding: .1em;
border-radius: .3em;
white-space: normal;
}
.token.comment,
.token.prolog,
.token.doctype,
.token.cdata {
color: slategray;
}
.token.punctuation {
color: #999;
}
.namespace {
opacity: .7;
}
.token.property,
.token.tag,
.token.boolean,
.token.number,
.token.constant,
.token.symbol,
.token.deleted {
color: #905;
}
.token.selector,
.token.attr-name,
.token.string,
.token.char,
.token.builtin,
.token.inserted {
color: #690;
}
.token.operator,
.token.entity,
.token.url,
.language-css .token.string,
.style .token.string {
color: #a67f59;
background: hsla(0, 0%, 100%, .5);
}
.token.atrule,
.token.attr-value,
.token.keyword {
color: #07a;
}
.token.function {
color: #DD4A68;
}
.token.regex,
.token.important,
.token.variable {
color: #e90;
}
.token.important,
.token.bold {
font-weight: bold;
}
.token.italic {
font-style: italic;
}
.token.entity {
cursor: help;
}
</style>
</head>
<body>
<p><strong>Important</strong>: since github markdown doesn't support LaTeX, view the complete note in the following link instead: <a href="https://rawgit.com/oldfatcrab/PMATH336/master/PMATH336_note.html">https://rawgit.com/oldfatcrab/PMATH336/master/PMATH336_note.html</a></p>
<hr>
<h1 id="toc_0">Table of Content</h1>
<ul>
<li><a href="#toc_1">Chapter 0: Course Administration</a> (May 02)</li>
<li><a href="#toc_2">Chapter 1: Groups</a> (May 02)
<ul>
<li><a href="#toc_3">1.1 Definitions and examples</a> (May 02)</li>
<li><a href="#toc_4">1.2 Subgroups</a> (May 06)</li>
<li><a href="#toc_5">1.3 Finite groups</a> (May 13)</li>
<li><a href="#toc_6">1.4 Cyclic groups</a> (May 18)</li>
</ul></li>
<li><a href="#toc_7">Chapter 2: Group homomorphisms</a> (May 30)
<ul>
<li><a href="#toc_8">2.1 Homomorphism and Isomorphism</a> (May 30)</li>
<li><a href="#toc_9">2.2 Permutation Groups</a> (Jun 10)</li>
<li><a href="#toc_10">2.3 Automorphisms</a> (Jun 22)</li>
</ul></li>
<li><a href="#toc_11">Chapter 3: Lagrange Theorem and Group Actions</a> (Jun 27)
<ul>
<li><a href="#toc_12">3.1 Langrange Theorem and Cosets</a> (Jun 27)</li>
<li><a href="#toc_13">3.2 Group Actions</a> (Jul 4)</li>
<li><a href="#toc_14">3.3 Stabilizers and orbits of an action</a> (Jul 6)</li>
</ul></li>
</ul>
<hr>
<p><em>2016/05/02</em></p>
<h1 id="toc_1">Chapter 0: Course Administration</h1>
<ul>
<li>Course structure
<ul>
<li>Group Theory Basics
<ul>
<li>Examples</li>
<li>Axioms</li>
<li>Subgroups and Lagrange's Theorem</li>
<li>Cyclic groups</li>
<li>Permutation groups</li>
<li>Normal subgroups</li>
<li>quotients</li>
<li>homomorphisms</li>
<li>Isomorphism theorems</li>
<li>automorphism groups and conjugation</li>
</ul></li>
<li>Group Actions
<ul>
<li>The orbit-statiliser theorem</li>
<li>Cauchy's theorem</li>
<li>Burnside's lemma</li>
<li>Pòlya enumeration</li>
<li>the class equation</li>
</ul></li>
<li>Other Topics
<ul>
<li>Platonic solids</li>
<li>classification of finite abelian groups</li>
<li>cryptography</li>
<li>application to physics (if time permitting)</li>
</ul></li>
</ul></li>
<li>Grading
<ul>
<li>6 assignments: 30%</li>
<li>Midterm: 20%</li>
<li>Final: 50%</li>
</ul></li>
<li>Office
<ul>
<li>MC 5427</li>
<li>Monday 14:00-16:00, Thursday 15:00-17:00, or by appointment</li>
</ul></li>
</ul>
<hr>
<h1 id="toc_2">Chapter 1: Groups</h1>
<h2 id="toc_3">1.1 Definitions and examples:</h2>
<ul>
<li>Let \(G\) be a non-empty set.
<ul>
<li>Def'n: A binary operation on \(G\) is a map that
<ul>
<li>\(G \times G \implies G\)</li>
<li>\((a,b) \mapsto a\star b\) or \(a\cdot b\) or \(ab\) (notation)</li>
</ul></li>
<li>A binary operation is often called a <strong>product</strong></li>
</ul></li>
<li>Ex 1)
<ul>
<li>\(G=\mathbb{Z}\) and</li>
<li>and \(+: \mathbb{Z}\times \mathbb{Z} \implies \mathbb{Z}\), \((m,n) \mapsto m+n\)</li>
<li>or \(\cdot: \mathbb{Z}\times \mathbb{Z} \implies \mathbb{Z}\), \((a,b) \mapsto ab\)</li>
</ul></li>
<li>Ex 2)
<ul>
<li>\(G=\mathbb{R}^3\)</li>
<li>and \( +: \mathbb{R}^3 \times \mathbb{R}^3 \implies \mathbb{R}^3, ((x_1, y_1, z_1), (x_2, y_2, z_2)) \mapsto (x_1+x_2, y_1+y_2, z_1+z_2)\)</li>
<li>and \(\times: \mathbb{R}^3 \times \mathbb{R}^3 \implies \mathbb{R}^3, ((x_1, y_1, z_1), (x_2, y_2, z_2)) \mapsto (x_1, y_1, z_1) \cdot (x_2, y_2, z_2)\)</li>
<li>but \(\dot: \mathbb{R}^3 \times \mathbb{R}^3 \implies \mathbb{R}, ((x_1, y_1, z_1), (x_2, y_2, z_2)) \mapsto (x_1x_2, y_1y_2, z_1z_2)\) is <strong>not</strong> a binary operation because the target space is not \(G=\mathbb{R}^3\)</li>
</ul></li>
<li>Def'n (<strong>Groups</strong>): Let \(G\) be a non-empty set with a binary operation, \(G\times G\implies G\), then \(G\) is a <strong>group</strong> if the binary operation has the following properties:
<ul>
<li>(i) (<strong>Associativity</strong>): \(a(bc) = (ab)c\), \(\forall a,b,c \in G\)</li>
<li>(ii) (<strong>Identity</strong>): \(\exists e \in G\) such that: \(ea = ae =a, \forall a\) in \(G\)</li>
<li>(iii) (<strong>Inverse</strong>): \(\forall a \in G\), \(\exists a^{-1} \in G\) such that: \(aa^{-1} = a^{-1} a = e\)</li>
</ul></li>
<li>Ex 1)
<ul>
<li>The integers: \((\mathbb{Z},+) \leadsto \) this is a group</li>
<li><strong>HERE</strong>: \(G = \mathbb{Z}\) and \(+: \mathbb{Z}\times\mathbb{Z} \implies \mathbb{Z}, (m,n) \mapsto m+n\)</li>
<li>Does \(+\) satisfy properties (i) to (iii)?
<ul>
<li>(i) Let \(m, n, r \in \mathbb{Z}\), then:
<ul>
<li>\(m+(n+r) = (m+n)+r\) ? YES!</li>
</ul></li>
<li>(ii) Identity of \(+\) is \(0 \in \mathbb{Z}\)
<ul>
<li>because \(0 + m = m + 0 = m, \forall m \in \mathbb{Z}\)</li>
</ul></li>
<li>(iii) \(\forall m \in \mathbb{Z}\), we have that
<ul>
<li>\(m + (-m) = (-m) + m = 0\)</li>
<li>\(\implies -m \in \mathbb{Z}\) is the inverse of \(m \in \mathbb{Z}\)</li>
</ul></li>
<li>Thus, \((\mathbb{Z},+)\) is a group.</li>
</ul></li>
</ul></li>
<li>Ex 2)
<ul>
<li>The integers: \((\mathbb{Z},\cdot)\leadsto\) this is a group</li>
<li><strong>HERE</strong>: \(G = \mathbb{Z}\) and \(\cdot: \mathbb{Z}\times\mathbb{Z} \implies \mathbb{Z}, (m,n) \mapsto m\cdot n\)</li>
<li>Does \(\cdot\) satisfy properties (i) to (iii)?
<ul>
<li>(i) Let \(m, n, r \in \mathbb{Z}\), then:
<ul>
<li>\(m\cdot(n\cdot r) = (m\cdot n)\cdot r\) ? YES!</li>
</ul></li>
<li>(ii) Identity of \(\cdot\) is \(1 \in \mathbb{Z}\)
<ul>
<li>because \(1 \cdot m = m \cdot 1 = m\), \(\forall m \in \mathbb{Z}\)</li>
</ul></li>
<li>(iii) \(\forall m \in \mathbb{Z}\), the inverse of m with respect to multiplication is \(\frac{1}{m}\) (if \(m \neq 0\)), but \(\frac{1}{m} \notin \mathbb{Z}\) if \(m\neq\pm1\). So property (iii) fails!</li>
<li>Thus, \((\mathbb{Z},\cdot)\) is not a group.</li>
</ul></li>
</ul></li>
<li>Ex 3)
<ul>
<li>\(G = \{1, -1\}\) set of 2 elements with the binary operation given by:</li>
</ul></li>
</ul>
<table>
<thead>
<tr>
<th>\(\cdot\)</th>
<th>\(1\)</th>
<th>\(-1\)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\(1\)</td>
<td>\(1\)</td>
<td>\(-1\)</td>
</tr>
<tr>
<td>\(-1\)</td>
<td>\(-1\)</td>
<td>\(1\)</td>
</tr>
</tbody>
</table>
<ul>
<li>(continue)
<ul>
<li>Note that \(\cdot\) is just the usual product in \(\mathbb{R}\) restricted to element in \(G\). Then \(G\) is a group because:
<ul>
<li>(i) \(\cdot\) is associative because multiplication in \(\mathbb{R}\) is associative</li>
<li>(ii) \(1\) is the identity.</li>
<li>(iii) From the table, we see that \(1\) is the inverse of \(1\) and \(-1\) is the inverse of \(-1\leadsto\) every element in \(G\) has an inverse.</li>
</ul></li>
</ul></li>
<li>Ex 4)
<ul>
<li>\((\mathbb{Q}, +)\) is a group (exercise)</li>
</ul></li>
<li>Ex 5)
<ul>
<li>\( (\mathbb{Q}^*, \cdot)\) is a group where \(\mathbb{Q}^* = \mathbb{Q}\setminus\{0\}\)</li>
<li>Indeed:
<ul>
<li>(i) Multiplication in \(\mathbb{Q}^*\) is associative as in \(\mathbb{Z}\) and \(\mathbb{R}\)</li>
<li>(ii) \(1 \in \mathbb{Q}^*\) is the identity with respect to \dot.</li>
<li>(iii) \(\forall \frac{a}{b} \in \mathbb{Q}^*\), we have that \(\frac{b}{a} \in \mathbb{Q}^*\) and \(\frac{a}{b} \cdot \frac{b}{a} = \frac{b}{a}\cdot \frac{a}{b} = 1 \implies \frac{a}{b}^{-1} = \frac{b}{a} \implies\) every element in \(\mathbb{Q}^*\) has an inverse</li>
</ul></li>
<li>Note:
<ul>
<li>\((\mathbb{Q}, \cdot)\) is <strong>not</strong> a group because even though (i) and (ii) hold, property (iii) fails for \(0 \in \mathbb{Q}\)</li>
</ul></li>
</ul></li>
<li>Ex 6)
<ul>
<li>\((\mathbb{R}, +)\) and \((\mathbb{C}, +)\) are groups</li>
</ul></li>
<li>Ex 7)
<ul>
<li>\((\mathbb{R}^*, \cdot)\) and \((\mathbb{C}^*, \cdot)\) are groups (where \(\mathbb{R}^* = \mathbb{R}\setminus\{0\}\) and \(\mathbb{C}^* = \mathbb{C}\setminus\{0\})\)</li>
</ul></li>
<li>Ex 8)
<ul>
<li>\((\{1, i, -1, -1\}, \cdot)\) is a group, where \(i \in \mathbb{C}\) such that \(i^2 = -1\). Here:</li>
</ul></li>
</ul>
<table>
<thead>
<tr>
<th>\(\cdot\)</th>
<th>\(1\)</th>
<th>\(i\)</th>
<th>\(-1\)</th>
<th>\(-i\)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\(1 \)</td>
<td>\( 1 \)</td>
<td>\( i\)</td>
<td>\(-1\)</td>
<td>\(-i\)</td>
</tr>
<tr>
<td>\(i \)</td>
<td>\( i \)</td>
<td>\( -1\)</td>
<td>\(-i\)</td>
<td>\(1 \)</td>
</tr>
<tr>
<td>\(-1 \)</td>
<td>\( -1 \)</td>
<td>\( -i\)</td>
<td>\(1 \)</td>
<td>\(i \)</td>
</tr>
<tr>
<td>\(-i\)</td>
<td>\( -i \)</td>
<td>\( 1 \)</td>
<td>\(i \)</td>
<td>\(1 \)</td>
</tr>
</tbody>
</table>
<p><em>2016/05/04</em></p>
<ul>
<li>Review from last lecture:
<ul>
<li>Def'n (<strong>Groups</strong>): Let \(G\) be a non-empty set with a binary operation, \(G\times G\implies G\), then \(G\) is a <strong>group</strong> if the binary operation has the following properties:
<ul>
<li>(i) (<strong>Associativity</strong>): \(a(bc) = (ab)c\), \(\forall a,b,c \in G\)</li>
<li>(ii) (<strong>Identity</strong>): \(\exists e \in G\) such that: \(ea = ae =a, \forall a\) in \(G\)</li>
<li>(iii) (<strong>Inverse</strong>): \(\forall a \in G\), \(\exists a^{-1} \in G\) such that: \(aa^{-1} = a^{-1} a = e\)</li>
</ul></li>
</ul></li>
<li>Note: Properties (i)-(iii) in the def'n are called the <strong>group axioms</strong></li>
<li>Ex 9) <strong>Integer module n</strong>: \(\mathbb{Z}_n\)
<ul>
<li>In \(\mathbb{Z}_n\), two integer \(r\) and \(s\) are equivalent if \(r = s+an\), for same \(a\) in \(\mathbb{Z}\), this is written as \(r \equiv s\) (mod \(n\))</li>
<li>e.g.:
<ul>
<li>\(\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}\)</li>
<li>\(\overline{0} \equiv \{0, 3, -3, 6, \cdots\} \equiv \overline{3}\)</li>
<li>\(\overline{1} \equiv \{1, 4, -2, 7, \cdots\} \equiv \overline{4}\)</li>
<li>\(\overline{2} \equiv \{2, 5, -1, 8, \cdots\} \equiv \overline{5}\)</li>
</ul></li>
<li>\(\forall F, F' \in \mathbb{Z}_n\), we set:
<ul>
<li>\(\overline{r} + \overline{r_1} = \overline{r+r_1}\), and</li>
<li>\(\overline{r} \cdot \overline{r_1} = \overline{r \cdot r1}\)</li>
</ul></li>
<li>\((\mathbb{Z}_n, +)\): since \(+\) is associative in \(\mathbb{Z}\), it is also associative with \(\mathbb{Z}_n\). Moreover, \(\overline{0}\) is the identity for \(+\). finally, \(\overline{-r}\) is <strong>inverse</strong> of \(F\) with respect to \(+\). We will denote \(\overline{-r}\) by \(-\overline{r} \implies (\mathbb{Z}_n, +)\) is a group</li>
<li>\((\mathbb{Z}_n, \cdot)\): Again, since \(\cdot\) is associative in \(\mathbb{Z}\), it is also associative in \(\mathbb{Z}\),. And \(\overline{1}\) is the identity for \(\cdot\), however, not every element in \(\mathbb{Z}_n\) has an inverse with respect to \(\cdot\). In fact, recall that \(F \in \mathbb{Z}_n\) has a multiplicative inverse iff \(gcd(r,n) = 1\). I.e. \(\exists \overline s \in \mathbb{Z}_n\) such that \(\overline r \cdot \overline s = \overline s \cdot \overline r = \overline 1\) iff \(gcd(r, n) = 1\)</li>
<li>If an element \(\overline r \in \mathbb{Z}_n\) has an inverse in \(\mathbb{Z}_n\), it is called a <strong>unit</strong>.</li>
<li>Set \(\mathbb{Z}_n^* = \{\text{units in }\mathbb{Z}_n\} = \{F\in \mathbb{Z}_n \mid gcd(r,n)=1\}\). Then, \((\mathbb{Z}_n^*, \cdot)\) is a group
<ul>
<li>E.g. \(\mathbb{Z}_6 = \{\overline 1, \overline 2, \overline 3, \overline 4, \overline 5, \overline 6\}\) and \(\mathbb{Z}_6^* = \{\overline 1, \overline 5\}\)</li>
</ul></li>
<li>The Cayley table for \((\mathbb{Z}_6, \cdot)\) is:</li>
</ul></li>
</ul>
<table>
<thead>
<tr>
<th>\(\cdot\)</th>
<th>\(\overline 1\)</th>
<th>\(\overline 5\)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\(\overline 1\)</td>
<td>\(\overline 1\)</td>
<td>\(\overline 5\)</td>
</tr>
<tr>
<td>\(\overline 5\)</td>
<td>\(\overline 5\)</td>
<td>\(\overline 1\)</td>
</tr>
</tbody>
</table>
<ul>
<li>Def'n: Let \((G, \cdot)\) be a group, the <strong>order of the group</strong> \(G\) is denoted \(\mid G \mid\), is the number of element in the group
<ul>
<li>Remark: If the binary operation is clear, we write \(G\) instead of \((G, \cdot)\)</li>
<li>E.g.:
<ul>
<li>\((\mathbb{Z}, +) \implies \mid\mathbb{Z}\mid = \infty\)</li>
<li>\((\mathbb{Z}_6,+) \implies \mid\mathbb{Z}_6\mid = 6\)</li>
<li>\((\mathbb{Z}_6^*,\cdot) \implies \mid\mathbb{Z}_6^* \mid = 2\)</li>
</ul></li>
</ul></li>
<li>Aside: There is another important set of objets in abstract algebra, which corresponds to rings (with identity):
<ul>
<li>Def'n: A <strong>ring</strong> (with identity) is a non-empty set \(G\) together with <strong>two</strong> binary operations \(+\), \(\cdot\), such that:
<ul>
<li>1) \((G,+)\) is a group (i.e. \(+\) satisfies properties (i)-(iii)</li>
<li>2) \((G,\cdot)\) is such that \(\cdot\) satisfies (i) and (iii) </li>
<li>3) \(+\) and \(\cdot\) satisfy the distributive lays: \((a+b)\cdot c = a\cdot c+b\cdot c, \forall a,b,c \in G\)</li>
</ul></li>
<li>E.g. \((\mathbb{Z}, +, \cdot)\), \((\mathbb{R}, +, \cdot)\), \((\mathbb{C}, +, \cdot)\), \((\mathbb{Q}, +, \cdot)\) , \((\mathbb{Z}_6, +, \cdot)\) etc.</li>
<li>In a ring, the elements that have inverses with respect to multiplication are called <strong>units</strong></li>
</ul></li>
<li>Def'n: A group \((G, \cdot)\) is called <strong>abelian</strong> if the binary operation is <strong>commutative</strong>: \(a \cdot b = b \cdot a, \forall a,b \in G\)
<ul>
<li>E.g. \((\mathbb{Z}, +)\), \((\mathbb{R}, +)\), \((\mathbb{C}, +)\), \((\mathbb{Q}, +)\) , \((\mathbb{Z}_6, +)\) etc.</li>
<li>However, not every group is abelian!
<ul>
<li>E.g. Consider \(G = GL(n, \mathbb{R}) = \{A\in M_{n\times n}(\mathbb{R}) \mid A\text{ is invertible}\} = \{A\in M_{n\times n}(\mathbb{R}) | \det A \neq 0\} \)</li>
</ul></li>
<li>Note that \(\exists\) natural operations on \(n\times n\) matrices: addition and multiplication. Let \(A, B \in M_{n\times n}(\mathbb{R})\). Then:
<ul>
<li>\(A+B,\, A\cdot B \in M_{n\times n}(\mathbb{R})\)</li>
<li>\(\implies +\), \(\cdot\) are binary operations for \(M_{n\times n}(\mathbb{R})\)</li>
<li>However, if \(A, B \in G\), although \(A\cdot B \in G\), may not have \(A+B \in G\) (e.g. \(a\in G\) so that \(0\in G\), but \(A+(-A)=0 \notin G\)) \(\implies\) \(+\) is not a binary operation with for \(G\)</li>
<li>Consider \((G, \cdot)\). Then it is a group (exercise) where the identity is the nxn identity matrix \(I_{n\times n}\). But, \((G, \cdot)\) is <strong>not</strong> abelian because \(AB \neq BA\) for most \(A,B \in G\)</li>
</ul></li>
<li>A group \((G, \cdot)\) is called <strong>non-abelian</strong> if it is not abelian.</li>
</ul></li>
<li><strong>Some basic properties</strong>:
<ul>
<li>1) The identity element \(e\) in a group \((G, \cdot)\) is unique</li>
<li>2) The inverse of an element in a group \((G, \cdot)\) is unique</li>
</ul></li>
</ul>
<p><em>2016/05/06</em></p>
<ul>
<li>Review:
<ul>
<li>Def'n (<strong>Groups</strong>): Let \(G\) be a non-empty set with a binary operation, \(G\times G\implies G\), then \(G\) is a <strong>group</strong> if the binary operation has the following properties:
<ul>
<li>(i) (<strong>Associativity</strong>): \(a(bc) = (ab)c\), \(\forall a,b,c \in G\)</li>
<li>(ii) (<strong>Identity</strong>): \(\exists e \in G\) such that: \(ea = ae =a, \forall a\) in \(G\)</li>
<li>(iii) (<strong>Inverse</strong>): \(\forall a \in G\), \(\exists a^{-1} \in G\) such that: \(aa^{-1} = a^{-1} a = e\)</li>
</ul></li>
<li><strong>Some basic properties</strong>:
<ul>
<li>1) (<strong>Uniqueness of identity</strong>) The identity element \(e\) in a group \((G, \cdot)\) is unique</li>
<li>2) (<strong>Uniqueness of inverses</strong>) The inverse of an element in a group \((G, \cdot)\) is unique</li>
</ul></li>
</ul></li>
<li>Proof of above identities:
<ul>
<li>1) (Uniqueness of identity)
<ul>
<li>Suppose \(\exists e, f \in G\) such that \(ae = ea = a\) and \(af = fa = a, \forall a \in G\).</li>
<li>In particular, since \(f\in G\), we have that \(f = fe\) because \(e\) is an identity</li>
<li>Similarly, because \(e\in G\) and \(f\) is an identity, \(fe = e\)</li>
<li>\(\implies f=fe=e\)</li>
</ul></li>
<li>2) (Uniqueness of inverses)
<ul>
<li>Let \(a\in G\). Suppose that a has <strong>two</strong> inverses in \(G\), say \(a^{-1}\) and \(b\). Therefore, by property (iii), we have: \(aa^{-1} = a^{-1} a = e\) and \(ab = ba = e\)</li>
<li>Then \(a^{-1} = a^{-1}e = a^{-1}(ab) = (a^{-1}a)b = eb = b\)</li>
<li>\(\implies a^{-1}=b\)</li>
</ul></li>
</ul></li>
<li>Using these properties, we obtain:
<ul>
<li>3) \(e{-1}=e\)</li>
<li>4) \((ab)^{-1}=b^{-1}a^{-1},\forall a,b \in G\)</li>
<li>5) \((a^{-1})^{-1}=a,\forall a \in G\)</li>
<li>6) \((a_1a_2\cdots a_n)^{-1} = a_n^{-1}\cdots a_2^{-1}a_1^{-1}\)</li>
<li>7) (Cancellation Property) Let \(a,b,c\in G\) with \(G\) a group. If ab = ac, then b=c. If ba=ca, then b = c.</li>
</ul></li>
<li>Proof:
<ul>
<li>3)
<ul>
<li>By uniqueness of the inverse, it is enough to check that \(ee = ee = e\) to proof that \(e^{-1}=e\). But this is true by property (ii).</li>
</ul></li>
<li>4)
<ul>
<li>By uniqueness of the inverse, it is enough to check that \(ab(b^{-1}a^{-1}) = (b^{-1}a^{-1})ab = e\)</li>
<li>By associatitivy, we have that \(ab(b^{-1}a^{-1} = a(bb^{-1})a^{-1} = aea^{-1} = (ae)a^{-1} = aa^{-1} = e\)</li>
<li>Similarly, \((b^{-1}a^{-1})ab=b^{-1}(a^{-1}a)b=b^{-1}eb=(b^{-1}e)b=b^{-1}b=e\)</li>
<li>\(\implies (ab)^{-1}=b^{-1}a^{-1}\)</li>
<li>Note:
<ul>
<li>\(GL(n,\mathbb{R})=\) all general linear group </li>
<li>One would be tempted to think that \((ab)^{-1}=a^{-1}b^{-1}\) but this is false in general.</li>
<li>Example:
<ul>
<li>\((G,\cdot) = (GL(2,\mathbb{R}),\cdot)\)</li>
<li>A = \(\begin{pmatrix}1&2\\0&1\end{pmatrix}\) and B = \(\begin{pmatrix}2&0\\0&3\end{pmatrix}\)</li>
<li>\(\implies AB = \begin{pmatrix}2&6\\0&3\end{pmatrix}\) and \((AB)^{-1}=\begin{pmatrix}\frac{1}{2}&-1\\ 0&\frac{1}{3} \end{pmatrix}\)</li>
<li>But, \(A^{-1}B^{-1} = \begin{pmatrix}\frac 1 2&-\frac 2 3\\0&\frac 1 3\end{pmatrix} \neq (AB)^{-1}\)</li>
<li>Nonetheless, \(B^{-1}A^{-1} = \begin{pmatrix}\frac{1}{2}&-1\\ 0&\frac{1}{3} \end{pmatrix} = (AB)^{-1}\)</li>
</ul></li>
<li>In fact, one can show that: \((ab)^{-1}=a^{-1}b^{-1},\forall a,b,\in G \Leftrightarrow G\) is abelian (Exercise).</li>
</ul></li>
</ul></li>
<li>5) and 6)
<ul>
<li>Exercise in assignment 1</li>
</ul></li>
<li>7)
<ul>
<li>Suppose that \(ab = ac\). Then, since \(G\) is a group, \(\exists a^{-1}\in G\) such that \(aa^{-1}=a^{-1}a=e\)</li>
<li>Therefore \(a^{-1}(ab)=(a^{-1}a)b=eb=b\)</li>
<li>Similarly, \(a^{-1}(ac)=c\).</li>
<li>But, \(ab=ac\), so that \(a^{-1}(ab)=a^{-1}(ac)=c\)</li>
<li>The proof of 2nd cancellation property is similar</li>
</ul></li>
</ul></li>
</ul>
<h2 id="toc_4">1.2 Subgroups</h2>
<ul>
<li>Def'n: Let \(G\) e a group. If a subset \(H\) of \(G\) is itself a group under the operation of \(G\), we say that H is a <strong>subgroup</strong> of \(G\).</li>
<li>Note: the definition of a subgroup implies that subset it <strong>is closed under the operation in G</strong>. I.e. \(\forall a,b\in H\), then \(ab\in H\). This ensures that restriction of the binary operation \(G\times G\implies G\) is again a binary operation taking \(H\times H\implies H\). However, a subset of a group of \(G\) may not be closed under the operation on \(G\).
<ul>
<li>E.g. \((M_{n\times n}(\mathbb{R}), +)\) is a group and \(GL(n,\mathbb R)=\{A\in M_{n\times n}(\mathbb R) \mid \det A\ne 0\} \subset M_{nxn}(\mathbb R)\), but \(GL(n, \mathbb R)\) is not closed under \(+\) (e.g. \(\forall A \in GL(n,\mathbb R), -A \in GL(n,\mathbb R)\)) but \(A+(-A) \notin GL(n,\mathbb R)\)</li>
</ul></li>
<li>We use the notation \(H \vartriangleleft G\) (or \(H<G\)) to mean that H is a subgroup of \(G\). (some authors use \(H\trianglelefteq G\) and \(H\vartriangleleft G\) indicates that \(H \leq G\)). If \(H \leq G\), then H is called a <strong>proper subgroup of G</strong>. The singleton \(\{e\}\) is a subgroup of \(G\) called the <strong>trivial subgroup</strong>; a subgroup of \(G\) that is not \(\{e\}\) is called a <strong>non-trivial subtroup of G</strong>.</li>
<li>How does one determine whether or not a subset \(H\) of \(G\) is a subgroup? There are 2 tests:
<ul>
<li>Theorem (<strong>One-step subgroup test</strong>): Let \(H\) be a non-empty subset of a group \(G\). If \(ab^{-1}\in H,\forall a,b\in H\), then \(H\vartriangleleft G\).</li>
</ul></li>
</ul>
<p><em>2016/05/09</em></p>
<ul>
<li><p>Review from previous lectures:</p>
<ul>
<li>\((G,\cdot)\) is a group if:
<ul>