-
Notifications
You must be signed in to change notification settings - Fork 0
/
Table 8-1-1.r
121 lines (101 loc) · 3.83 KB
/
Table 8-1-1.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# R code for Table 8-1-1 #
# Required packages #
# - sandwich: robust standard error #
# - parallel: parallelize simulation #
# - plyr: apply functions #
# - lmtest: simplifies testing #
# - reshape2: reshapin' data #
# - knitr: print markdown tables #
library(sandwich)
library(parallel)
library(plyr)
library(lmtest)
library(reshape2)
library(knitr)
# Set seed for replication
set.seed(1984, "L'Ecuyer")
# Set number of simulations
nsims = 25000
# Set parameters of the simulation
N = 30
r = 0.9
N_1 = r * 30
# Store a list of the standard error types
se.types <- c("const", paste0("HC", 0:3))
# Create a function to extract standard errors
calculate.se <- function(lm.obj, type) {
sqrt(vcovHC(lm.obj, type = type)[2, 2])
}
# Create function to calculate max of conventional versus robust, returning max
compare.conv <- function(conventional, x) {
pmax(conventional, x)
}
# Create function for rejection rate
reject.rate <- function(x) {
mean(ifelse(x <= 0.05, 1, 0))
}
# Create function for simulation
clusterBiasSim <- function(sigma = 1,...) {
# Generate data
d <- c(rep(0, N_1), rep(1, N - N_1))
epsilon <- rnorm(n = N, sd = sigma) * (d == 0) + rnorm(n = N) * (d == 1)
y <- 0 * d + epsilon
simulated.data <- data.frame(y = y, d = d)
# Run regression
lm.sim <- lm(y ~ d, data = simulated.data)
b1 <- coef(lm.sim)[2]
# Calculate standard errors
se.sim <- sapply(se.types, calculate.se, lm.obj = lm.sim)
# Return the results of a simulation
data.frame(b1, t(se.sim))
}
# Function for running simulations and returning table of results
summarizeBias <- function(nsims = 25000, sigma = 1) {
# Run simulation
simulated.results <- do.call(rbind,
mclapply(1:nsims,
clusterBiasSim,
sigma = sigma))
# Calculate maximums
se.compare <- sapply(simulated.results[ , se.types[-1]],
compare.conv,
conventional = simulated.results$const)
colnames(se.compare) <- paste0("max.const.", colnames(se.compare))
simulated.results <- data.frame(simulated.results, se.compare)
# Calculate rejections
melted.sims <- melt(simulated.results, measure = 2:10)
melted.sims$z.p <- 2 * pnorm(abs(melted.sims$b1 / melted.sims$value),
lower.tail = FALSE)
melted.sims$t.p <- 2 * pt(abs(melted.sims$b1 / melted.sims$value),
df = 30 - 2,
lower.tail = FALSE)
rejections <- aggregate(melted.sims[ , c("z.p", "t.p")],
by = list(melted.sims$variable),
FUN = reject.rate)
rownames(rejections) <- rejections$Group.1
# Get means and standard deviations
summarize.table <- sapply(simulated.results,
each(mean, sd),
na.rm = TRUE)
summarize.table <- t(summarize.table)
# Return all the results as one data.frame
merge(summarize.table, rejections[-1], by = "row.names", all.x = TRUE)
}
# Function for printing results to markdown
printBias <- function(obj.df) {
colnames(obj.df) <- c("Estimate", "Mean", "Std", "Normal", "t")
obj.df$Estimate <- c("Beta_1", "Conventional",
paste0("HC", 0:3),
paste0("max(Conventional, HC", 0:3, ")"))
print(kable(obj.df, digits = 3))
}
# Panel A
panel.a <- summarizeBias(nsims = nsims, sigma = 0.5)
printBias(panel.a)
# Panel B
panel.b <- summarizeBias(nsims = nsims, sigma = 0.85)
printBias(panel.b)
# Panel C
panel.c <- summarizeBias(nsims = nsims, sigma = 1)
printBias(panel.c)
# End of file