forked from Mohammadamin-Barekatain/multipolar
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathenjoy.py
executable file
·136 lines (109 loc) · 5.45 KB
/
enjoy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
This script is a copy from https://github.com/araffin/rl-baselines-zoo and is useful only for testing the installation
"""
import argparse
import os
import gym
import pybullet_envs
import numpy as np
from stable_baselines.common import set_global_seeds
from stable_baselines.common.vec_env import VecNormalize, VecFrameStack
from utils import create_test_env, get_latest_run_id, get_saved_hyperparams
from utils.policies import ALGOS
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--env', help='environment ID', type=str, default='CartPole-v1')
parser.add_argument('-f', '--folder', help='Log folder', type=str, default='trained_agents')
parser.add_argument('--algo', help='RL Algorithm', default='ppo2',
type=str, required=False, choices=list(ALGOS.keys()))
parser.add_argument('-n', '--n-timesteps', help='number of timesteps', default=1000,
type=int)
parser.add_argument('--n-envs', help='number of environments', default=1,
type=int)
parser.add_argument('--exp-id', help='Experiment ID (default: -1, no exp folder, 0: latest)', default=-1,
type=int)
parser.add_argument('--verbose', help='Verbose mode (0: no output, 1: INFO)', default=1,
type=int)
parser.add_argument('--no-render', action='store_true', default=False,
help='Do not render the environment (useful for tests)')
parser.add_argument('--deterministic', action='store_true', default=False,
help='Use deterministic actions')
parser.add_argument('--norm-reward', action='store_true', default=False,
help='Normalize reward if applicable (trained with VecNormalize)')
parser.add_argument('--seed', help='Random generator seed', type=int, default=0)
parser.add_argument('--reward-log', help='Where to log reward', default='', type=str)
args = parser.parse_args()
env_id = args.env
algo = args.algo
folder = args.folder
is_atari = 'NoFrameskip' in env_id
if args.exp_id == 0:
args.exp_id = get_latest_run_id(os.path.join(folder, algo), env_id)
print('Loading latest experiment, id={}'.format(args.exp_id))
# Sanity checks
if args.exp_id > 0:
log_path = os.path.join(folder, algo, '{}_{}'.format(env_id, args.exp_id))
else:
log_path = os.path.join(folder, algo)
model_path = "{}/{}.pkl".format(log_path, env_id)
assert os.path.isdir(log_path), "The {} folder was not found".format(log_path)
assert os.path.isfile(model_path), "No model found for {} on {}, path: {}".format(algo, env_id, model_path)
if algo in ['dqn', 'ddpg', 'sac']:
args.n_envs = 1
set_global_seeds(args.seed)
stats_path = os.path.join(log_path, env_id)
hyperparams, stats_path = get_saved_hyperparams(stats_path, norm_reward=args.norm_reward, test_mode=True)
log_dir = args.reward_log if args.reward_log != '' else None
env = create_test_env(env_id, n_envs=args.n_envs,
stats_path=stats_path, seed=args.seed, log_dir=log_dir,
should_render=not args.no_render,
hyperparams=hyperparams)
# ACER raises errors because the environment passed must have
# the same number of environments as the model was trained on.
load_env = None if algo == 'acer' else env
model = ALGOS[algo].load(model_path, env=load_env)
obs = env.reset()
# Force deterministic for DQN and DDPG
deterministic = args.deterministic or algo in ['dqn', 'ddpg', 'sac']
running_reward = 0.0
ep_len = 0
for _ in range(args.n_timesteps):
action, _ = model.predict(obs, deterministic=deterministic)
# Random Agent
# action = [env.action_space.sample()]
# Clip Action to avoid out of bound errors
if isinstance(env.action_space, gym.spaces.Box):
action = np.clip(action, env.action_space.low, env.action_space.high)
obs, reward, done, infos = env.step(action)
if not args.no_render:
env.render('human')
running_reward += reward[0]
ep_len += 1
if args.n_envs == 1:
# For atari the return reward is not the atari score
# so we have to get it from the infos dict
if is_atari and infos is not None and args.verbose >= 1:
episode_infos = infos[0].get('episode')
if episode_infos is not None:
print("Atari Episode Score: {:.2f}".format(episode_infos['r']))
print("Atari Episode Length", episode_infos['l'])
if done and not is_atari and args.verbose >= 1:
# NOTE: for env using VecNormalize, the mean reward
# is a normalized reward when `--norm_reward` flag is passed
print("Episode Reward: {:.2f}".format(running_reward))
print("Episode Length", ep_len)
running_reward = 0.0
ep_len = 0
# Workaround for https://github.com/openai/gym/issues/893
if not args.no_render:
if args.n_envs == 1 and 'Bullet' not in env_id and not is_atari:
# DummyVecEnv
# Unwrap env
while isinstance(env, VecNormalize) or isinstance(env, VecFrameStack):
env = env.venv
env.envs[0].env.close()
else:
# SubprocVecEnv
env.close()
if __name__ == '__main__':
main()