-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_city.py
384 lines (318 loc) · 15.6 KB
/
main_city.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os.path
import tensorflow as tf
import helper
import helper_cityscapes
import warnings
import math
from distutils.version import LooseVersion
from timeit import default_timer as timer
from tqdm import tqdm
import scipy.misc
import numpy as np
import argparse
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
L2_REG = 1e-5
STDEV = 1e-2
KEEP_PROB = 0.8
LEARNING_RATE = 5e-4
DATA_DIR = './data'
RUNS_DIR = './runs'
MODELS = './models'
EPOCHS = 20
BATCH_SIZE = 8
IMAGE_SHAPE = (256, 512)
def load_vgg(sess, vgg_path):
"""
Load Pretrained VGG Model into TensorFlow.
:param sess: TensorFlow Session
:param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb"
:return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)
"""
# Use tf.saved_model.loader.load to load the model and weights
vgg_tag = 'vgg16'
vgg_input_tensor_name = 'image_input:0'
vgg_keep_prob_tensor_name = 'keep_prob:0'
vgg_layer3_out_tensor_name = 'layer3_out:0'
vgg_layer4_out_tensor_name = 'layer4_out:0'
vgg_layer7_out_tensor_name = 'layer7_out:0'
tf.saved_model.loader.load(sess, [vgg_tag], vgg_path)
graph = tf.get_default_graph()
image_input = graph.get_tensor_by_name(vgg_input_tensor_name)
keep_prob = graph.get_tensor_by_name(vgg_keep_prob_tensor_name)
layer3_out = graph.get_tensor_by_name(vgg_layer3_out_tensor_name)
layer4_out = graph.get_tensor_by_name(vgg_layer4_out_tensor_name)
layer7_out = graph.get_tensor_by_name(vgg_layer7_out_tensor_name)
return image_input, keep_prob, layer3_out, layer4_out, layer7_out
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes):
"""
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.
:param vgg_layer7_out: TF Tensor for VGG Layer 3 output
:param vgg_layer4_out: TF Tensor for VGG Layer 4 output
:param vgg_layer3_out: TF Tensor for VGG Layer 7 output
:param num_classes: Number of classes to classify
:return: The Tensor for the last layer of output
"""
init = tf.truncated_normal_initializer(stddev=STDEV)
reg = tf.contrib.layers.l2_regularizer(L2_REG)
# reduce dimensions with conv1x1 filters
conv1x1_l3 = tf.layers.conv2d(
vgg_layer3_out,
num_classes,
kernel_size=1,
strides=1,
padding='same',
kernel_initializer=init,
kernel_regularizer=reg
)
conv1x1_l4 = tf.layers.conv2d(
vgg_layer4_out,
num_classes,
kernel_size=1,
strides=1,
padding='same',
kernel_initializer=init,
kernel_regularizer=reg
)
conv1x1 = tf.layers.conv2d(
vgg_layer7_out,
num_classes,
kernel_size=1,
strides=1,
padding='same',
kernel_initializer=init,
kernel_regularizer=reg
)
# upsample output of encoder by 2
deconv_1 = tf.layers.conv2d_transpose(
conv1x1,
num_classes,
kernel_size=4,
strides=2,
padding='same',
kernel_initializer=init,
kernel_regularizer=reg
)
# add skip connection from layer 4
deconv_1 = tf.add(deconv_1, conv1x1_l4)
# upsample by 2
deconv_2 = tf.layers.conv2d_transpose(
deconv_1,
num_classes,
kernel_size=4,
strides=2,
padding='same',
kernel_initializer=init,
kernel_regularizer=reg
)
# add skip connection from layer 3
deconv_2 = tf.add(deconv_2, conv1x1_l3)
# upsample by 8: so we are back to the original image size (that was downsampled by 32 in encoder)
deconv_3 = tf.layers.conv2d_transpose(
deconv_2,
num_classes,
kernel_size=16,
strides=8,
padding='same',
kernel_initializer=init,
kernel_regularizer=reg
)
return deconv_3
def build_predictor(nn_last_layer):
softmax_output = tf.nn.softmax(nn_last_layer)
predictions_argmax = tf.argmax(softmax_output, axis=-1)
return softmax_output, predictions_argmax
def build_metrics(correct_label, predictions_argmax, num_classes):
labels_argmax = tf.argmax(correct_label, axis=-1)
iou, iou_op = tf.metrics.mean_iou(labels_argmax, predictions_argmax, num_classes)
return iou, iou_op
def optimize(nn_last_layer, correct_label, learning_rate, num_classes):
"""
Build the TensorFLow loss and optimizer operations.
:param nn_last_layer: TF Tensor of the last layer in the neural network
:param correct_label: TF Placeholder for the correct label image
:param learning_rate: TF Placeholder for the learning rate
:param num_classes: Number of classes to classify
:return: Tuple of (logits, train_op, cross_entropy_loss)
"""
logits = tf.reshape(nn_last_layer, (-1, num_classes))
labels = tf.reshape(correct_label, (-1, num_classes))
'''
Measures the probability error in discrete classification tasks in which the classes are mutually exclusive (each entry is in exactly one class). For example, each CIFAR-10 image is labeled with one and only one label: an image can be a dog or a truck, but not both.
'''
loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)
cross_entropy_loss = tf.reduce_mean(loss)
# # l2_reg does not help here apparently ...
# regularization_loss = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) # Scalar
# cross_entropy_loss = cross_entropy_loss + regularization_loss
optimizer = tf.train.AdamOptimizer(learning_rate)
# optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.99) # does not work well...
# optimizer = tf.train.GradientDescentOptimizer(learning_rate)
# optimizer = tf.train.RMSPropOptimizer(learning_rate, decay=0.9, momentum=0.0)
train_op = optimizer.minimize(cross_entropy_loss)
return logits, train_op, cross_entropy_loss
def train_nn(sess, epochs, batch_size, get_train_batches_fn, get_valid_batches_fn, train_op, cross_entropy_loss,
input_image, correct_label, keep_prob, learning_rate, iou, iou_op, saver, n_train, n_valid, lr):
"""
Train neural network and print out the loss during training.
:param sess: TF Session
:param epochs: Number of epochs
:param batch_size: Batch size
:param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size)
:param train_op: TF Operation to train the neural network
:param cross_entropy_loss: TF Tensor for the amount of loss
:param input_image: TF Placeholder for input images
:param correct_label: TF Placeholder for label images
:param keep_prob: TF Placeholder for dropout keep probability
:param learning_rate: TF Placeholder for learning rate
"""
print("Start training with lr {} ...".format(lr))
best_iou = 0
for epoch in range(epochs):
generator = get_train_batches_fn(batch_size)
description = 'Train Epoch {:>2}/{}'.format(epoch + 1, epochs)
start = timer()
losses = []
ious = []
for image, label in tqdm(generator, total=n_train, desc=description, unit='batches'):
_, loss, _ = sess.run([train_op, cross_entropy_loss, iou_op],
feed_dict={input_image: image, correct_label: label,
keep_prob: KEEP_PROB, learning_rate: lr})
# print(loss)
losses.append(loss)
ious.append(sess.run(iou))
end = timer()
helper.plot_loss(RUNS_DIR, losses, "loss_graph_training")
print("EPOCH {} with lr {} ...".format(epoch + 1, lr))
print(" time {} ...".format(end - start))
print(" Train Xentloss = {:.4f}".format(sum(losses) / len(losses)))
print(" Train IOU = {:.4f}".format(sum(ious) / len(ious)))
generator = get_valid_batches_fn(batch_size)
description = 'Valid Epoch {:>2}/{}'.format(epoch + 1, epochs)
losses = []
ious = []
for image, label in tqdm(generator, total=n_valid, desc=description, unit='batches'):
loss, _ = sess.run([cross_entropy_loss, iou_op],
feed_dict={input_image: image, correct_label: label, keep_prob: 1})
losses.append(loss)
ious.append(sess.run(iou))
helper.plot_loss(RUNS_DIR, losses, "loss_graph_validation")
print(" Valid Xentloss = {:.4f}".format(sum(losses) / len(losses)))
valid_iou = sum(ious) / len(ious)
print(" Valid IOU = {:.4f}".format(valid_iou))
if (valid_iou > best_iou):
saver.save(sess, os.path.join(MODELS, '/fcn8s'))
saver.save(sess, os.path.join(MODELS, '/fcn8s.ckpt'))
with open(os.path.join(MODELS, '/training.txt'), "w") as text_file:
text_file.write("models/fcn8s: epoch {}, lr {}, valid_iou {}".format(epoch + 1, lr, valid_iou))
print(" model saved")
best_iou = valid_iou
else:
lr *= 0.5 # lr scheduling: halving on failure
print(" no improvement => lr downscaled to {} ...".format(lr))
def test_nn(sess, batch_size, get_test_batches_fn, predictions_argmax, input_image, correct_label, keep_prob, iou,
iou_op, n_batches):
generator = get_test_batches_fn(batch_size)
ious = []
for image, label in tqdm(generator, total=n_batches, unit='batches'):
labels, _ = sess.run([predictions_argmax, iou_op],
feed_dict={input_image: image, correct_label: label, keep_prob: 1})
ious.append(sess.run(iou))
print("Test IOU = {:.4f}".format(sum(ious) / len(ious)))
def predict_nn(sess, test_image, predictions_argmax, input_image, keep_prob, image_shape, label_colors):
start = timer()
image = scipy.misc.imresize(test_image, image_shape)
labels = sess.run([predictions_argmax], feed_dict={input_image: [image], keep_prob: 1})
labels = labels[0].reshape(image_shape[0], image_shape[1])
# create an overlay
labels_colored = np.zeros((image_shape[0], image_shape[1], 4)) # 4 for RGBA
for label in label_colors:
label_mask = labels == label
labels_colored[label_mask] = np.array((*label_colors[label], 127))
mask = scipy.misc.toimage(labels_colored, mode="RGBA")
pred_image = scipy.misc.toimage(image)
pred_image.paste(mask, box=None, mask=mask)
end = timer()
print("predict time {}".format(end - start))
return pred_image
def parse_input():
parser = argparse.ArgumentParser(description='Train FCN8s')
parser.add_argument('--resume', type=bool, default=False, help='resume training')
parser.add_argument('--lr', type=float, default=LEARNING_RATE, help='learning rate')
parser.add_argument('--epochs', type=int, default=EPOCHS, help='epochs')
parser.add_argument('--batch-size', type=int, default=BATCH_SIZE, help='batch size')
args = parser.parse_args()
return args
def run():
args = parse_input()
resume = args.resume
lr = args.lr
epochs = args.epochs
batch_size = args.batch_size
# Download pre trained vgg model
helper.maybe_download_pretrained_vgg(DATA_DIR)
# OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
# You'll need a GPU with at least 10 teraFLOPS to train on.
# https://www.cityscapes-dataset.com/
train_images, valid_images, test_images, num_classes, label_colors, image_shape = helper_cityscapes.load_data(DATA_DIR)
print("len: train_images {}, valid_images {}, test_images {}".format(len(train_images), len(valid_images), len(test_images)))
# Create function to get batches
get_train_batches_fn = helper_cityscapes.gen_batch_function(train_images, image_shape)
get_valid_batches_fn = helper_cityscapes.gen_batch_function(valid_images, image_shape)
get_test_batches_fn = helper_cityscapes.gen_batch_function(test_images, image_shape)
correct_label = tf.placeholder(tf.float32, (None, image_shape[0], image_shape[1], num_classes))
learning_rate = tf.placeholder(tf.float32, [])
with tf.Session() as sess:
# Path to vgg model
vgg_path = os.path.join(DATA_DIR, 'vgg')
# OPTIONAL: Augment Images for better results
# https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network
# I did contrast and brightness image augmentation in helper_cityscapes
input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path)
fcn8s_output = layers(layer3_out, layer4_out, layer7_out, num_classes)
logits, train_op, cross_entropy_loss = optimize(fcn8s_output, correct_label, learning_rate, num_classes)
softmax_output, predictions_argmax = build_predictor(fcn8s_output)
iou, iou_op = build_metrics(correct_label, predictions_argmax, num_classes)
# WARNING run those initializer _BEFORE_ restore
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
saver = tf.train.Saver()
if resume: # resume training from saved params
saver.restore(sess, tf.train.latest_checkpoint('.'))
print("resume")
n_train = int(math.ceil(len(train_images) / batch_size))
n_valid = int(math.ceil(len(valid_images) / batch_size))
train_nn(sess, epochs, batch_size, get_train_batches_fn, get_valid_batches_fn, train_op, cross_entropy_loss,
input_image, correct_label, keep_prob, learning_rate, iou, iou_op, saver, n_train, n_valid, lr)
test_image = scipy.misc.imread("test_image.png")
pred_image = predict_nn(sess, test_image, predictions_argmax, input_image, keep_prob, image_shape, label_colors)
scipy.misc.imsave("predicted_image_city.png", pred_image)
n_batches = int(math.ceil(len(test_images) / batch_size))
# batch_size 32 is ok (and faster) with GTX 1080 TI and 11 GB memory
test_nn(sess, 32, get_test_batches_fn, predictions_argmax, input_image,
correct_label, keep_prob, iou, iou_op, n_batches)
if resume: # resume training from saved params
saver.restore(sess, tf.train.latest_checkpoint('.'))
print("resume")
# helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
helper_cityscapes.save_inference_samples(RUNS_DIR, test_images, sess, image_shape, logits, keep_prob,
input_image, label_colors)
output_node_names = 'Softmax'
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
)
saver.save(sess, os.path.join(MODELS, './optimized/fcn8s.ckpt'))
tf.train.write_graph(tf.get_default_graph().as_graph_def(), '', os.path.join(MODELS, '/optimized/base_graph.pb'), False)
tf.train.write_graph(output_graph_def, '', os.path.join(MODELS, '/optimized/frozen_graph.pb'), False)
print("%d ops in the final graph." % len(output_graph_def.node))
# OPTIONAL: Apply the trained model to a video
if __name__ == '__main__':
run()