-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-comp_slack_ex.Rmd
62 lines (57 loc) · 2.11 KB
/
1-comp_slack_ex.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
## Exercises {-}
1. Let (P) and (D) denote a primal-dual pair of linear programming
problems. Prove that if (P) is not infeasible and (D) is infeasible,
then (P) is unbounded.
2. Let (P) denote the following linear programming problem:
\[\begin{array}{rrcrcrll}
\min & & & 4x_2 & + & 2x_3 \\
\text{s.t.}
& x_1 & + & x_2 & + & 3x_3 & \leq & 1 \\
& x_1 & - & 2x_2 & + & x_3 & \geq & 1 \\
& x_1 & + & 3x_2 & - & 6x_3 & = & 0 \\
& x_1 & , & & & x_3 & \geq & 0 \\
& & & x_2 & & & & \text{free.}
\end{array}\]
Determine if
\(\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}
=\begin{bmatrix} \frac{3}{5} \\ -\frac{1}{5}\\ 0 \end{bmatrix}\)
is an optimal solution to (P).
3. Let (P) denote the following linear programming problem:
\[\begin{array}{rrcrcrlll}
\min & x_1 & + & 2x_2 & - & 3x_3 \\
\text{s.t.}
& x_1 & + & 2 x_2 & + & 2x_3 & = & 2 \\
& -x_1 & + & x_2 & + & x_3 & = & 1 \\
& -x_1 & + & x_2 & - & x_3 & \geq & 0 \\
& x_1 & , & x_2 & , & x_3 & \geq & 0
\end{array}\]
Determine if
\(\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}
=\begin{bmatrix} 0 \\ 1\\ 0 \end{bmatrix}\)
is an optimal solution to (P).
4. Let \(m\) and \(n\) be positive integers.
Let \(\mm{A}\in \mathbb{R}^{m\times n}\).
Let \(\vec{b}\in \mathbb{R}^{m}\).
Let \(\vec{c}\in \mathbb{R}^{n}\).
Let (P) denote the linear programming problem
\[\begin{array}{rl}
\min & \vec{c}^\mathsf{T} \vec{x} \\
\text{s.t.} & \mm{A} \vec{x} = \vec{b} \\
& \vec{x} \geq \vec{0}.
\end{array}
\]
Let (D) denote the dual problem of (P):
\[\begin{array}{rl}
\max & \vec{y}^\mathsf{T} \vec{b} \\
\text{s.t.} & \vec{y}^\T \mm{A} \leq
\vec{c}^\mathsf{T}.
\end{array}
\]
Suppose that \(\mm{A}\) has rank \(m\) and that (P) has
at least one optimal solution.
Prove that if \(x^*_j = 0\) for *every* optimal solution
\(\mm{x}^*\) to (P),
then there exists
an optimal solution \(\vec{y}^*\) to (D)
such that \({\vec{y}^*}^\T\mm{A}_j \lt c_i\) where
\(\mm{A}_j\) denotes the \(j\)th column of \(\mathbf{A}\).