-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-farkas_lemma_sol.Rmd
82 lines (67 loc) · 2.76 KB
/
1-farkas_lemma_sol.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
## Solutions {-}
1. The system can be written as \(\mm{A}\vec{x} \geq \vec{b}\)
with \(\mm{A} = \begin{bmatrix}
1 & 1 & 2 \\
-1 & 1 & 1 \\
1 & -1 & 1 \\
0 & -1 & -3 \end{bmatrix}\) and
\(\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0\end{bmatrix}\).
So we need to find \(\vec{y} \geq 0\) such that
\(\vec{y}^\mathsf{T} \mm{A} = \vec{0}\)
and \(\vec{y}^\mathsf{T} \vec{b} \gt 0\).
As the system of equations
\(\vec{y}^\mathsf{T} \mm{A} = \vec{0}\) is homogeneous,
we could without loss of generality fix
\(\vec{y}^\mathsf{T} \vec{b} = 1\), thus leading to
the system
\begin{eqnarray*}
\vec{y}^\mathsf{T}\mm{A} = \vec{0} \\
\vec{y}^\mathsf{T}\vec{b} = 1 \\
\vec{y} \geq \vec{0}
\end{eqnarray*}
that we could attempt to solve directly.
However, it is possible to obtain a \(\vec{y}\) using
the Fourier-Motzkin Elimination Method.
Let us first label the inequalities:
\begin{eqnarray*}
x_1 + x_2 + 2x_3& \geq & 1~~~~~(1) \\
-x_1 + x_2 + x_3 & \geq & 2~~~~~(2) \\
x_1-x_2 + x_3 & \geq & 1~~~~~(3) \\
-x_2 - 3x_3 & \geq & 0.~~~~(4)
\end{eqnarray*}
Eliminating \(x_1\) gives:
\begin{eqnarray*}
-x_2 - 3x_3 & \geq & 0~~~~~(4) \\
2x_2 + 3x_3& \geq & 3~~~~~(5) \\
2x_3 & \geq & 3.~~~~(6) \\
\end{eqnarray*}
Note that \((5)\) is obtained from \((1) + (2)\) and
\((6)\) is obtained from \((2) + (3)\).
Multiplying \((5)\) by \(\frac{1}{2}\) gives
\begin{eqnarray*}
-x_2 - 3x_3 & \geq & 0~~~~~~(4) \\
x_2 + \frac{3}{2}x_3& \geq & \frac{3}{2}~~~~(7) \\
2x_3 & \geq & 3.~~~~~(6) \\
\end{eqnarray*}
Eliminating \(x_2\) gives:
\begin{eqnarray*}
2x_3 & \geq & 3~~~~~~~(6) \\
- \frac{3}{2} x_3 & \geq & \frac{3}{2}~~~~~(8)
\end{eqnarray*}
where \((8)\) is obtained from \((4) + (7)\).
Now \(\frac{3}{4}\times (6) + (8)\)
gives \(0 \geq \frac{15}{4}\), a contradiction.
To obtain a certificate of infeasibility, we trace back the computations.
Note that
\(\frac{3}{4} (6) + (8)\) is given by
\(\frac{3}{4} ((2)+(3)) + (4)+ (7)\), which in turn is given by
\(\frac{3}{4} ((2)+(3)) + (4)+ \frac{1}{2}(5)\), which in turn is given by
\(\frac{3}{4} ((2)+(3)) + (4)+ \frac{1}{2}((1) + (2))\).
Thus, we can obtain \(0 \geq \frac{15}{4}\) from the nonnegative
linear combination of the original inequalities as follows:
\(\frac{1}{2} (1) + \frac{5}{4} (2) + \frac{3}{4} (3) + (4)\).
Therefore, \(\vec{y} = \begin{bmatrix}
\frac{1}{2} \\ \frac{5}{4} \\ \frac{3}{4} \\ 1\end{bmatrix}\)
is a certificate of infeasibility.
(Check that \(\vec{y}^\mathsf{T}\mm{A} = \vec{0}\) and
\(\vec{y}^\mathsf{T} \vec{b} \gt 0\).