-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-fundamental_sol.Rmd
103 lines (91 loc) · 3.39 KB
/
1-fundamental_sol.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
## Solutions {-}
1. The problem is equivalent to determining the minimum value for \(x\)
among all \(x,y,z\) satisfying
\[
\begin{array}{r}
x + y \geq 2 ~~~~~~(1)\\
x - 2y + z \geq 0~~~~~~(2) \\
y - 2z \geq -1.~~~~(3)
\end{array}
\]
We use Fourier-Motzkin Elimination Method to eliminate \(z\).
Multiplying \((3)\) by \(\frac{1}{2}\), we get
\[
\begin{array}{r}
x + y \geq 2 ~~~~~~(1)\\
x - 2y + z \geq 0~~~~~~(2) \\
\frac{1}{2}y - z \geq -\frac{1}{2}.~~~~(4)
\end{array}
\]
Eliminating \(z\), we obtain
\[
\begin{array}{r}
x + y \geq 2 ~~~~~~(1)\\
x - \frac{3}{2}y \geq -\frac{1}{2}~~~~~~(5) \\
\end{array}
\]
where \((5)\) is given by \((2) + (4)\).
Multiplying \((5)\) by \(\frac{2}{3}\), we get
\[
\begin{array}{r}
x + y \geq 2 ~~~~~~(1)\\
\frac{2}{3} x - y \geq -\frac{1}{3}~~~~~~(6) \\
\end{array}
\]
Eliminating \(y\), we get
\[
\begin{array}{r}
\frac{5}{3} x \geq \frac{5}{3} ~~~~~~(7)\\
\end{array}
\]
where \((7)\) is given by \((1) + (6)\).
Multiplying \((7)\) by \(\frac{3}{5}\), we obtain \(x \geq 1\).
Hence, the minimum possible value for \(x\) is \(1\).
Note that setting \(x = 1\), the system \((1)\) and \((6)\) forces
\(y = 1.\)
And \((2)\) and \((3)\) together force \(z = 1.\)
One can check that \((x,y,z) = (1,1,1)\) is a feasible solution.
**Remark.**
Note that the inequality \(x \geq 1\) is given by
\begin{eqnarray*}
\frac{3}{5} (7)
& \Leftarrow & \frac{3}{5} (1) + \frac{3}{5} (6) \\
& \Leftarrow & \frac{3}{5} (1) + \frac{2}{5} (5) \\
& \Leftarrow & \frac{3}{5} (1) + \frac{2}{5} (2) + \frac{2}{5} (4) \\
& \Leftarrow & \frac{3}{5} (1) + \frac{2}{5} (2) + \frac{1}{5} (3)
\end{eqnarray*}
2. It suffices to determine if there exists a minimum value for \(z\) among
all the solutions to the system
\[
\begin{array}{rl}
z- x_1 - 2x_2 \geq 0 & ~~~(1) \\
-z+ x_1 + 2x_2 \geq 0 & ~~~(2)\\
x_1 + 3x_2 \geq 4 & ~~~(3)\\
-x_1 + x_2 \geq 0 & ~~~(4)
\end{array}
\]
Using Fourier-Motzkin elimination to eliminate \(x_1\), we obtain:
\[
\begin{array}{rrl}
(1) + (2): & 0 \geq 0 \\
(1) + (3): & z + x_2 \geq 4 & ~~~(5)\\
(2) + (4): & - z + 3x_2 \geq 0 & ~~~(6) \\
(3) + (4): & 4x_2 \geq 4 & ~~~(7)
\end{array}
\]
Note that all the coefficients of \(x_2\) is nonnegative. Hence,
eliminating \(x_2\) will result in a system with no constraints.
Therefore, there is no lower bound on the value of \(z\).
In particular, if \(z = t\) for \(t\leq 0\), then from \((5)\)--\((6)\),
we need \(x_2 \geq 4-t\), \(3x_2 \geq t\), and \(x_2 \geq 1\).
Hence, we can set \(x_2 = 4-t\) and \(x_1 = -8+3t\).
This gives a feasible solution for all \(t \leq 0\)
with objective function value that approaches \(-\infty\)
as \(t \rightarrow -\infty\). Hence, the linear programming problem
is unbounded.
3. Let (P) denote a linear programming problem with a bounded nonempty
feasible region with objective function \(\vec{c}^\T\vec{x}\).
By assumption, (P) is not infeasible. Note that (P)
is not unbounded because
\(|\vec{c}^\T\vec{x}| \leq \sum_{i} |c_i||x_i| \leq M \sum_{i} |c_i| \).
Thus, by Theorem \@ref(thm:fund-lp), (P) has an optimal solution.