-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPhrase Grounding.py
192 lines (156 loc) · 6.44 KB
/
Phrase Grounding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# MRM: https://github.com/RL4M/MRM-pytorch
# CheXzero: https://github.com/rajpurkarlab/CheXzero
# --------------------------------------------------------
import os
import sys
import torch
import matplotlib
import argparse
import torch.nn.functional as F
from math import ceil, floor
from pathlib import Path
sys.path.append(os.getcwd())
from eval.common import Pipeline, ImageTextInferenceEngine
from eval.utils import sort_result
FONT_MAX = 50
matplotlib.use('Agg')
import torch.nn.functional as F
import torch.nn as nn
from math import ceil, floor
from pathlib import Path
from functools import partial
from einops import rearrange
import sys
sys.path.append(os.getcwd())
from model_MaCo import MaCo
from PIL import Image
import torchvision.transforms as transforms
from torchvision.transforms.functional import InterpolationMode
import random
import tokenizers
def trans():
return transforms.Compose([
transforms.Grayscale(num_output_channels=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4978], std=[0.2449])
])
class Engine(ImageTextInferenceEngine):
def __init__(self) -> None:
super().__init__()
self.tokenizer = tokenizers.Tokenizer.from_file("/path/to/mimic_wordpiece.json")
self.idxtoword = {v: k for k, v in self.tokenizer.get_vocab().items()}
self.tokenizer.enable_truncation(max_length=100)
self.tokenizer.enable_padding(length=100)
def load_model(self, ckpt, **kwargs):
device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = MaCo(img_size=224,
patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=768, decoder_depth=4, decoder_num_heads=6,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), T= 0.07, SR=sr).cuda()
ckpt = torch.load(ckpt, map_location=device)
ckpt = ckpt["model"]
try:
del ckpt['WCE.weight']
except:
a=1
self.model.load_state_dict(ckpt)
def pil_loader(self, path: str) -> Image.Image:
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
img.convert('RGB')
img = img.resize((224, 224), resample=Image.Resampling.BICUBIC)
return img
def _text_process(self, text):
tem = text.split('.')
tem = [i.strip() + '. ' for i in tem]
tem_tem = [t.lower() for t in tem if len(t) > 5 and '_' not in t and t[0] != ',']
tem = tem_tem
random.shuffle(tem)
choice = len(tem)
# choice = random.randint(1, len(tem))
report = ''
for i in range(choice):
report += tem[i]
return report
def get_emb(self, image_path: Path, query_text: str, device):
'''
return iel: [h, w, feature_size]
teg: [1, feature_size]
'''
with torch.no_grad():
self.model.eval()
imgs = self.pil_loader(str(image_path))
imgs = trans()(imgs)
sent = self._text_process(query_text)
sent = '[CLS] ' + sent
encoded = self.tokenizer.encode(sent)
ids = torch.tensor(encoded.ids).unsqueeze(0)
attention_mask = torch.tensor(encoded.attention_mask).unsqueeze(0)
type_ids = torch.tensor(encoded.type_ids).unsqueeze(0)
imgs = imgs.cuda()
ids = ids.cuda()
attention_mask = attention_mask.cuda()
type_ids = type_ids.cuda()
latent_img = self.model.forward_img_encoder_nomask(imgs.unsqueeze(0))
latent_img = latent_img[0, 1:, :]
latent_img = self.model.img_mlp(latent_img)
labels = None
latent_report = self.model.bert_encoder(ids, ids, labels, attention_mask, type_ids).logits
tau = 0.02
w = (self.model.pos_weight_img.weight/tau).softmax(dim=-1).detach().squeeze(0).unsqueeze(-1)
latent_img = latent_img * w
latent_img = rearrange(latent_img, '(h w) f -> h w f', h=14, w=14).detach()
latent_report = latent_report.detach()
return latent_img, latent_report
def get_similarity_map_from_raw_data(
self, image_path: Path, query_text: str, device, interpolation: str = "nearest",
):
iel, teg = self.get_emb(image_path, query_text, device)
sim = self._get_similarity_map_from_embeddings(iel, teg).view(-1, 1)
sim = sim.view(14, 14)
resized_sim_map = self.convert_similarity_to_image_size(
sim,
width=224,
height=224,
resize_size=224,
crop_size=224,
interpolation=interpolation,
)
return resized_sim_map
def main(**kwargs):
ckpt_dir = os.path.abspath(kwargs["ckpt_dir"])
if not os.path.exists(ckpt_dir):
return False
ckpt_list = sorted([os.path.join(ckpt_dir, i) for i in os.listdir(ckpt_dir) if i.endswith(".pth")])
engine = Engine()
for merge in [True, ]:
for margin in [False, ]:
pipeline = Pipeline(engine, merge=merge, margin=margin, **kwargs)
for ckpt in ckpt_list:
if checkpoint not in ckpt:
continue
print(ckpt)
result = pipeline.run(ckpt=ckpt, **kwargs)
return result
if __name__ == "__main__":
global sr
global checkpoint
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", "-ds", type=str, default="MS_CXR")
parser.add_argument("--redo", "-r", type=bool, default=True)
parser.add_argument("--save_fig", "-s", type=bool, default=True)
parser.add_argument('--gpu', type=str, default='0', help='gpu')
parser.add_argument('--opt_th', type=bool, default=False)
parser.add_argument('--ckpt_dir', type=str, default="/path/to/maco.pth")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
result = main(**vars(args))
iou = result['iou'].values[-1]
cnr = result['cnr'].values[-1]
with open('Result-grounding.txt', "a") as file:
file.write('%s iou:%.4f cnr:%.4f' % (args.ckpt_dir, iou, cnr) + "\n")