The ssd_mobilenet_v1_coco
model is a Single-Shot multibox Detection (SSD) network intended to perform object detection.
Metric | Value |
---|---|
Type | Detection |
GFLOPs | 2.494 |
MParams | 6.807 |
Source framework | TensorFlow* |
Metric | Value |
---|---|
coco_precision | 23.3212% |
Image, name - image_tensor
, shape - 1, 300, 300, 3
, format - B, H, W, C
, where:
B
- batch sizeH
- image heightW
- image widthC
- number of channels
Expected color order - RGB
.
Image, name - image_tensor
, shape - 1, 300, 300, 3
, format - B, H, W, C
, where:
B
- batch sizeH
- image heightW
- image widthC
- number of channels
Expected color order - BGR
.
- Classifier, name -
detection_classes
, contains predicted bounding boxes classes in range [1, 91]. The model was trained on Common Objects in Context (COCO) dataset version with 91 categories of object, 0 class is for background. Mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl_bkgr.txt
file. - Probability, name -
detection_scores
, contains probability of detected bounding boxes. - Detection box, name -
detection_boxes
, contains detection boxes coordinates in format[y_min, x_min, y_max, x_max]
, where (x_min
,y_min
) are coordinates top left corner, (x_max
,y_max
) are coordinates right bottom corner. Coordinates are rescaled to input image size. - Detections number, name -
num_detections
, contains the number of predicted detection boxes.
The array of summary detection information, name - DetectionOutput
, shape - 1, 1, 100, 7
in the format 1, 1, N, 7
, where N
is the number of detected
bounding boxes. For each detection, the description has the format:
[image_id
, label
, conf
, x_min
, y_min
, x_max
, y_max
], where:
image_id
- ID of the image in the batchlabel
- predicted class ID in range [1, 91], mapping to class names provided in<omz_dir>/data/dataset_classes/coco_91cl_bkgr.txt
file.conf
- confidence for the predicted class- (
x_min
,y_min
) - coordinates of the top left bounding box corner (coordinates stored in normalized format, in range [0, 1]) - (
x_max
,y_max
) - coordinates of the bottom right bounding box corner (coordinates stored in normalized format, in range [0, 1])
You can download models and if necessary convert them into OpenVINO™ IR format using the Model Downloader and other automation tools as shown in the examples below.
An example of using the Model Downloader:
omz_downloader --name <model_name>
An example of using the Model Converter:
omz_converter --name <model_name>
The model can be used in the following demos provided by the Open Model Zoo to show its capabilities:
- Object Detection C++ Demo
- Object Detection Python* Demo
- Pedestrian Tracker C++ Demo
- Single Human Pose Estimation Demo
The original model is distributed under the
Apache License, Version 2.0.
A copy of the license is provided in <omz_dir>/models/public/licenses/APACHE-2.0-TF-Models.txt
.