This repository has been archived by the owner on Sep 10, 2024. It is now read-only.
forked from scylladb/gocql
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuuid.go
316 lines (272 loc) · 8.25 KB
/
uuid.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Copyright (c) 2012 The gocql Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gocql
// The uuid package can be used to generate and parse universally unique
// identifiers, a standardized format in the form of a 128 bit number.
//
// http://tools.ietf.org/html/rfc4122
import (
"crypto/rand"
"errors"
"fmt"
"io"
"net"
"strings"
"sync/atomic"
"time"
)
type UUID [16]byte
var hardwareAddr []byte
var clockSeq uint32
const (
VariantNCSCompat = 0
VariantIETF = 2
VariantMicrosoft = 6
VariantFuture = 7
)
func init() {
if interfaces, err := net.Interfaces(); err == nil {
for _, i := range interfaces {
if i.Flags&net.FlagLoopback == 0 && len(i.HardwareAddr) > 0 {
hardwareAddr = i.HardwareAddr
break
}
}
}
if hardwareAddr == nil {
// If we failed to obtain the MAC address of the current computer,
// we will use a randomly generated 6 byte sequence instead and set
// the multicast bit as recommended in RFC 4122.
hardwareAddr = make([]byte, 6)
_, err := io.ReadFull(rand.Reader, hardwareAddr)
if err != nil {
panic(err)
}
hardwareAddr[0] = hardwareAddr[0] | 0x01
}
// initialize the clock sequence with a random number
var clockSeqRand [2]byte
io.ReadFull(rand.Reader, clockSeqRand[:])
clockSeq = uint32(clockSeqRand[1])<<8 | uint32(clockSeqRand[0])
}
// ParseUUID parses a 32 digit hexadecimal number (that might contain hypens)
// representing an UUID.
func ParseUUID(input string) (UUID, error) {
var u UUID
j := 0
for _, r := range input {
switch {
case r == '-' && j&1 == 0:
continue
case r >= '0' && r <= '9' && j < 32:
u[j/2] |= byte(r-'0') << uint(4-j&1*4)
case r >= 'a' && r <= 'f' && j < 32:
u[j/2] |= byte(r-'a'+10) << uint(4-j&1*4)
case r >= 'A' && r <= 'F' && j < 32:
u[j/2] |= byte(r-'A'+10) << uint(4-j&1*4)
default:
return UUID{}, fmt.Errorf("invalid UUID %q", input)
}
j += 1
}
if j != 32 {
return UUID{}, fmt.Errorf("invalid UUID %q", input)
}
return u, nil
}
// UUIDFromBytes converts a raw byte slice to an UUID.
func UUIDFromBytes(input []byte) (UUID, error) {
var u UUID
if len(input) != 16 {
return u, errors.New("UUIDs must be exactly 16 bytes long")
}
copy(u[:], input)
return u, nil
}
// RandomUUID generates a totally random UUID (version 4) as described in
// RFC 4122.
func RandomUUID() (UUID, error) {
var u UUID
_, err := io.ReadFull(rand.Reader, u[:])
if err != nil {
return u, err
}
u[6] &= 0x0F // clear version
u[6] |= 0x40 // set version to 4 (random uuid)
u[8] &= 0x3F // clear variant
u[8] |= 0x80 // set to IETF variant
return u, nil
}
var timeBase = time.Date(1582, time.October, 15, 0, 0, 0, 0, time.UTC).Unix()
// getTimestamp converts time to UUID (version 1) timestamp.
// It must be an interval of 100-nanoseconds since timeBase.
func getTimestamp(t time.Time) int64 {
utcTime := t.In(time.UTC)
ts := int64(utcTime.Unix()-timeBase)*10000000 + int64(utcTime.Nanosecond()/100)
return ts
}
// TimeUUID generates a new time based UUID (version 1) using the current
// time as the timestamp.
func TimeUUID() UUID {
return UUIDFromTime(time.Now())
}
// The min and max clock values for a UUID.
//
// Cassandra's TimeUUIDType compares the lsb parts as signed byte arrays.
// Thus, the min value for each byte is -128 and the max is +127.
const (
minClock = 0x8080
maxClock = 0x7f7f
)
// The min and max node values for a UUID.
//
// See explanation about Cassandra's TimeUUIDType comparison logic above.
var (
minNode = []byte{0x80, 0x80, 0x80, 0x80, 0x80, 0x80}
maxNode = []byte{0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f}
)
// MinTimeUUID generates a "fake" time based UUID (version 1) which will be
// the smallest possible UUID generated for the provided timestamp.
//
// UUIDs generated by this function are not unique and are mostly suitable only
// in queries to select a time range of a Cassandra's TimeUUID column.
func MinTimeUUID(t time.Time) UUID {
return TimeUUIDWith(getTimestamp(t), minClock, minNode)
}
// MaxTimeUUID generates a "fake" time based UUID (version 1) which will be
// the biggest possible UUID generated for the provided timestamp.
//
// UUIDs generated by this function are not unique and are mostly suitable only
// in queries to select a time range of a Cassandra's TimeUUID column.
func MaxTimeUUID(t time.Time) UUID {
return TimeUUIDWith(getTimestamp(t), maxClock, maxNode)
}
// UUIDFromTime generates a new time based UUID (version 1) as described in
// RFC 4122. This UUID contains the MAC address of the node that generated
// the UUID, the given timestamp and a sequence number.
func UUIDFromTime(t time.Time) UUID {
ts := getTimestamp(t)
clock := atomic.AddUint32(&clockSeq, 1)
return TimeUUIDWith(ts, clock, hardwareAddr)
}
// TimeUUIDWith generates a new time based UUID (version 1) as described in
// RFC4122 with given parameters. t is the number of 100's of nanoseconds
// since 15 Oct 1582 (60bits). clock is the number of clock sequence (14bits).
// node is a slice to gurarantee the uniqueness of the UUID (up to 6bytes).
// Note: calling this function does not increment the static clock sequence.
func TimeUUIDWith(t int64, clock uint32, node []byte) UUID {
var u UUID
u[0], u[1], u[2], u[3] = byte(t>>24), byte(t>>16), byte(t>>8), byte(t)
u[4], u[5] = byte(t>>40), byte(t>>32)
u[6], u[7] = byte(t>>56)&0x0F, byte(t>>48)
u[8] = byte(clock >> 8)
u[9] = byte(clock)
copy(u[10:], node)
u[6] |= 0x10 // set version to 1 (time based uuid)
u[8] &= 0x3F // clear variant
u[8] |= 0x80 // set to IETF variant
return u
}
// String returns the UUID in it's canonical form, a 32 digit hexadecimal
// number in the form of xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.
func (u UUID) String() string {
var offsets = [...]int{0, 2, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 28, 30, 32, 34}
const hexString = "0123456789abcdef"
r := make([]byte, 36)
for i, b := range u {
r[offsets[i]] = hexString[b>>4]
r[offsets[i]+1] = hexString[b&0xF]
}
r[8] = '-'
r[13] = '-'
r[18] = '-'
r[23] = '-'
return string(r)
}
// Bytes returns the raw byte slice for this UUID. A UUID is always 128 bits
// (16 bytes) long.
func (u UUID) Bytes() []byte {
return u[:]
}
// Variant returns the variant of this UUID. This package will only generate
// UUIDs in the IETF variant.
func (u UUID) Variant() int {
x := u[8]
if x&0x80 == 0 {
return VariantNCSCompat
}
if x&0x40 == 0 {
return VariantIETF
}
if x&0x20 == 0 {
return VariantMicrosoft
}
return VariantFuture
}
// Version extracts the version of this UUID variant. The RFC 4122 describes
// five kinds of UUIDs.
func (u UUID) Version() int {
return int(u[6] & 0xF0 >> 4)
}
// Node extracts the MAC address of the node who generated this UUID. It will
// return nil if the UUID is not a time based UUID (version 1).
func (u UUID) Node() []byte {
if u.Version() != 1 {
return nil
}
return u[10:]
}
// Clock extracts the clock sequence of this UUID. It will return zero if the
// UUID is not a time based UUID (version 1).
func (u UUID) Clock() uint32 {
if u.Version() != 1 {
return 0
}
// Clock sequence is the lower 14bits of u[8:10]
return uint32(u[8]&0x3F)<<8 | uint32(u[9])
}
// Timestamp extracts the timestamp information from a time based UUID
// (version 1).
func (u UUID) Timestamp() int64 {
if u.Version() != 1 {
return 0
}
return int64(uint64(u[0])<<24|uint64(u[1])<<16|
uint64(u[2])<<8|uint64(u[3])) +
int64(uint64(u[4])<<40|uint64(u[5])<<32) +
int64(uint64(u[6]&0x0F)<<56|uint64(u[7])<<48)
}
// Time is like Timestamp, except that it returns a time.Time.
func (u UUID) Time() time.Time {
if u.Version() != 1 {
return time.Time{}
}
t := u.Timestamp()
sec := t / 1e7
nsec := (t % 1e7) * 100
return time.Unix(sec+timeBase, nsec).UTC()
}
// Marshaling for JSON
func (u UUID) MarshalJSON() ([]byte, error) {
return []byte(`"` + u.String() + `"`), nil
}
// Unmarshaling for JSON
func (u *UUID) UnmarshalJSON(data []byte) error {
str := strings.Trim(string(data), `"`)
if len(str) > 36 {
return fmt.Errorf("invalid JSON UUID %s", str)
}
parsed, err := ParseUUID(str)
if err == nil {
copy(u[:], parsed[:])
}
return err
}
func (u UUID) MarshalText() ([]byte, error) {
return []byte(u.String()), nil
}
func (u *UUID) UnmarshalText(text []byte) (err error) {
*u, err = ParseUUID(string(text))
return
}