forked from clovaai/subword-qac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generate.py
341 lines (284 loc) · 14.9 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""
Copyright (c) 2019-present NAVER Corp.
MIT License
"""
import os
import json
import time
import math
import random
import logging
import argparse
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import SequentialSampler, DataLoader
from tokenization import Tokenizer
from dataset import read_data, PrefixDataset, gen_collate_fn
from metric import calc_rank, calc_partial_rank, mrr_summary, mrl_summary
from utils import model_load
logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
logger = logging.getLogger(__name__)
gen_logger = logging.getLogger('generation')
gen_logger.propagate = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_args():
parser = argparse.ArgumentParser(description="Generating completions from query prefixes using a language model")
# data, model directory
parser.add_argument('--data_dir', default="data/aol/full")
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--output_dir', type=str, default=None)
parser.add_argument('--min_prefix_len', type=int, default=2)
parser.add_argument('--min_suffix_len', type=int, default=1)
# tokenization
parser.add_argument('--spm', type=str, default='char')
# evaluation metric
parser.add_argument('--calc_mrl', action='store_true')
# test
parser.add_argument('--n_queries', type=int, default=None)
parser.add_argument('--bsz', type=int, default=1)
parser.add_argument('--beam_size', type=int, default=30)
parser.add_argument('--branching_factor', type=int, default=30)
parser.add_argument('--n_candidates', type=int, default=10)
parser.add_argument('--retrace', type=int, default=0)
parser.add_argument('--nbest', type=int, default=1)
parser.add_argument('--do_merge', action='store_true')
parser.add_argument('--max_suffix_len', type=int, default=100)
parser.add_argument('--verbose_completion', action='store_true')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--num_workers', type=int, default=16)
args = parser.parse_args()
logger.info(f"device: {device}")
args.min_len = args.min_prefix_len + args.min_suffix_len
args.nbest = min(args.nbest, args.beam_size - 1)
args.branching_factor = min(args.branching_factor, args.beam_size)
decode_str = (f"+R{args.retrace}" if args.retrace != 0 else "") + ("+M" if args.do_merge else "")
args.output_dir = args.output_dir or os.path.join('outputs', args.spm, decode_str)
os.makedirs(args.output_dir, exist_ok=True)
file_handler = logging.FileHandler(os.path.join(args.output_dir, "generated.txt"), 'w')
file_handler.setFormatter(logging.Formatter('%(message)s'))
gen_logger.addHandler(file_handler)
gen_logger.propagate = True
return args
def log_sum_exp(a, b):
return max(a, b) + np.log(1 + math.exp(-abs(a - b)))
def merge(candidates):
merged = []
for candidate, logp in sorted(candidates, key=lambda x: x[0]):
if len(merged) > 0 and merged[-1][0] == candidate:
merged[-1] = (candidate, log_sum_exp(merged[-1][1], logp))
else:
merged.append((candidate, logp))
return merged
def remove_duplicates(candidates, prefix, n_candidates, do_merge=False):
candidates = [(' '.join(candidate.split()), logp) for candidate, logp in candidates]
candidates = [(candidate, logp) for candidate, logp in candidates if candidate != prefix]
if do_merge:
candidates = merge(candidates)
candidates = sorted(candidates, key=lambda x: x[1], reverse=True)
if do_merge:
return [candidate for candidate, _ in candidates[:n_candidates]]
filtered = []
for candidate, logp in candidates:
if candidate not in filtered:
filtered.append(candidate)
if len(filtered) == n_candidates:
break
return filtered
def beam_search(model, hidden, input, best_score, off, beam_size, branching_factor, max_suffix_len):
bsz = best_score.size(0)
batch_idx = torch.arange(bsz).to(device)
prev_beam_idxs = []
new_token_idxs = []
end_scores = []
end_prev_beam_idxs = []
for i in range(max_suffix_len):
output, hidden = model(input, hidden=hidden) # output: (1, batch * beam, ntoken)
logp = F.log_softmax(output.squeeze(0), 1) # logp: (batch * beam, t)
if i == 0 and off is not None:
logp.masked_fill_(off.unsqueeze(1).repeat(1, beam_size, 1).view(bsz * beam_size, -1), -float('inf'))
score = logp + best_score.view(-1).unsqueeze(1) # score: (batch * beam, t)
end_score = score[:, 2].view(-1, beam_size)
prev_end_score = end_scores[-1] if i > 0 else \
torch.zeros((bsz, beam_size), dtype=torch.float).fill_(-float('inf')).to(device)
end_score, end_prev_beam_idx = torch.cat((end_score, prev_end_score), 1).sort(-1, descending=True)
end_score = end_score[:,:beam_size] # end_score: (batch, beam)
end_prev_beam_idx = end_prev_beam_idx[:, :beam_size] # end_prev_beam_idx: (batch, beam)
end_scores.append(end_score)
end_prev_beam_idxs.append(end_prev_beam_idx)
score[:, 2].fill_(-float('inf'))
val, idx0 = score.topk(branching_factor, 1) # (batch * beam, f)
val = val.view(-1, beam_size * branching_factor) # (batch, beam * f)
idx0 = idx0.view(-1, beam_size * branching_factor) # (batch, beam * f)
best_score, idx1 = val.topk(beam_size, 1) # (batch, beam * f) -> (batch, beam)
prev_beam_idx = idx1 // branching_factor # (batch, beam)
new_token_idx = idx0.gather(1, idx1) # (batch, beam)
prev_beam_idxs.append(prev_beam_idx)
new_token_idxs.append(new_token_idx)
input = new_token_idx.view(1, -1)
hidden_idx = (prev_beam_idx + batch_idx.unsqueeze(1).mul(beam_size)).view(-1)
hidden = [(h.index_select(0, hidden_idx), c.index_select(0, hidden_idx)) for h, c in hidden]
if (best_score[:, 0] < end_score[:, -1]).all():
break
max_suffix_len = i + 1
tokens = torch.ones(bsz, beam_size, max_suffix_len, dtype=torch.long).to(device).mul(2) # tokens: (batch, beam, L)
pos = (beam_size + torch.arange(beam_size)).unsqueeze(0).repeat(bsz, 1).to(device) # pos: (batch, beam)
for i in reversed(range(max_suffix_len)):
end = pos >= beam_size
for j in range(bsz):
tokens[j, 1 - end[j], i] = new_token_idxs[i][j, pos[j, 1 - end[j]]]
pos[j][1 - end[j]] = prev_beam_idxs[i][j, pos[j, 1 - end[j]]]
pos[j][end[j]] = end_prev_beam_idxs[i][j, pos[j, end[j]] - beam_size]
decode_len = (tokens != 2).sum(2).max(1)[0]
return tokens, end_scores[-1], decode_len
def complete(model, tokenizer, batch, args):
queries, prefixes, previous, target, input, length, mask, off, retrace_idx, nbest_idx = batch
bsz = len(queries)
r_bsz = len(prefixes)
nb_bsz = previous.size(1)
beam_size = args.beam_size
branching_factor = args.branching_factor
max_suffix_len = args.max_suffix_len
output, hidden = model(previous, length=length)
raw_loss = F.cross_entropy(output.view(-1, args.ntoken), target.view(-1), reduction='none').view(-1, nb_bsz)
logp = -(raw_loss * mask.float()).sum(0)
new_hidden = [(h[:r_bsz].unsqueeze(1).repeat(1, beam_size, 1),
c[:r_bsz].unsqueeze(1).repeat(1, beam_size, 1)) for h, c in hidden]
best_scores = logp.unsqueeze(1).repeat(1, beam_size) # (batch, beam)
best_scores[:, 1:].fill_(-float('inf'))
if args.nbest > 1:
for i, (s, e) in enumerate(nbest_idx):
for (nh, nc), (h, c) in zip(new_hidden, hidden):
nh[i, :-(e - s)] = h[s:e]
nc[i, :-(e - s)] = c[s:e]
best_scores[i, :-(e - s)] = logp[s:e]
hidden = [(h.view(r_bsz * beam_size, -1), c.view(r_bsz * beam_size, -1)) for h, c in new_hidden]
bs_output = beam_search(model, hidden, input, best_scores, off, beam_size, branching_factor, max_suffix_len)
tokens, scores, decode_length = [v.tolist() for v in bs_output]
candidates = [[(prefix + ''.join([tokenizer.vocab[x] for x in t if x != 2]).replace('▁', ' '), s)
for t, s in zip(tt, ss)] for prefix, tt, ss in zip(prefixes, tokens, scores)]
if len(retrace_idx) > 0:
for i, r in reversed(list(enumerate(retrace_idx))):
candidates[r].extend(candidates[bsz + i])
decode_length[r] = max(decode_length[r], decode_length[bsz + i])
candidates[bsz:] = []
prefixes[bsz:] = []
decode_length[bsz:] = []
candidates = [remove_duplicates(c, prefix, args.n_candidates, args.do_merge)
for c, prefix in zip(candidates, prefixes)]
return candidates, decode_length
def generate(model, tokenizer, data, args, seen_set=None, calc_mrl=False):
model.eval()
n_queries = len(data)
query_lengths = np.array([len(q) for q in data])
bsz = args.bsz
seen_set = seen_set or set()
seens = np.array([int(q in seen_set) for q in data])
to_save = {'query_lengths': query_lengths, 'seens': seens}
dataset = PrefixDataset(data, min_prefix_len=args.min_prefix_len, min_suffix_len=args.min_suffix_len)
data_loader = DataLoader(dataset, sampler=SequentialSampler(dataset), batch_size=bsz, num_workers=args.num_workers,
collate_fn=lambda x: gen_collate_fn(x, tokenizer, args))
start = time.time()
ranks = []
pranks = []
prefix_lengths = []
decode_lengths = []
done_prev = done = 0
for i, batch in enumerate(data_loader):
batch = tuple(t.to(device) if isinstance(t, torch.Tensor) else t for t in batch)
queries, prefixes = batch[:2]
pls = [len(p) for p in prefixes]
# find completion candidates by beam search decoding
completions, dls = complete(model, tokenizer, batch, args)
ranks.extend([calc_rank(q, c) for q, c in zip(queries, completions)])
pranks.extend([calc_partial_rank(q, c) for q, c in zip(queries, completions)])
prefix_lengths.extend(pls)
decode_lengths.extend(dls)
if args.verbose_completion:
for p, q, c in zip(prefixes, queries, completions):
gen_logger.info(f"prefix : {p}")
gen_logger.info('-' * 90)
gen_logger.info(f"truth : {q}")
gen_logger.info('-' * 90)
for i, x in enumerate(c[:args.n_candidates], 1):
gen_logger.info(f"pred{i:02d}{'*' if x == q else ('.' if q.startswith(x + ' ') else ' ')}: {x}")
gen_logger.info('=' * 90)
gen_logger.info(" ")
done += len(queries)
if done_prev // 10000 < done // 10000:
logger.info(f"[{done}/{len(data)}]")
done_prev = done
mrr_et = time.time() - start
prefix_lengths = np.array(prefix_lengths)
decode_lengths = np.array(decode_lengths)
mdl = decode_lengths.mean()
gen_logger.info(f" mean decode length: {mdl:4.1f}")
qps = n_queries * 1. / mrr_et
gen_logger.info(f"{mrr_et:4.1f} s | {1000. / qps:4.1f} ms/query | {qps:4.1f} qps")
mrr_logs = mrr_summary(ranks, pranks, seens, args.n_candidates)
for log in mrr_logs:
gen_logger.info(log)
to_save.update({'prefix_lengths': prefix_lengths, 'decode_lengths': decode_lengths,
'ranks': ranks, 'pranks': pranks})
if calc_mrl:
start = time.time()
remain_idx = np.arange(n_queries)
recover_lengths = np.zeros((n_queries, args.n_candidates + 1), dtype=np.int)
last_rank = np.ones(n_queries, dtype=np.int)
suffix_len = 0
while len(remain_idx) > 0:
suffix_len += 1
logger.info(f" Processing {len(remain_idx):8d} queries for recover length {suffix_len:2d}")
dataset = PrefixDataset([data[i] for i in remain_idx], suffix_len=suffix_len)
data_loader = DataLoader(dataset, sampler=SequentialSampler(dataset), batch_size=bsz,
num_workers=args.num_workers,
collate_fn=lambda x: gen_collate_fn(x, tokenizer, args))
filtered_idx = []
for b, batch in enumerate(data_loader):
batch = tuple(t.to(device) if isinstance(t, torch.Tensor) else t for t in batch)
part_idx = remain_idx[b * bsz: (b + 1) * bsz]
queries, prefixes = batch[:2]
completions, _ = complete(model, tokenizer, batch, args)
r = np.array([calc_rank(q, c) for q, c in zip(queries, completions)])
filtered_part_idx = part_idx[r > 0]
last_rank[filtered_part_idx] = np.maximum(last_rank[filtered_part_idx], r[r > 0])
for i in filtered_part_idx:
recover_lengths[i, last_rank[i]:] += 1
long_enough = args.min_prefix_len + (suffix_len + 1) <= query_lengths[filtered_part_idx]
filtered_part_idx = filtered_part_idx[long_enough]
filtered_idx.append(filtered_part_idx)
remain_idx = np.concatenate(filtered_idx)
mrl_et = time.time() - start
gen_logger.info(f"{mrl_et:6.2f} s")
mrl_logs = mrl_summary(recover_lengths, seens, args.n_candidates)
for log in mrl_logs:
gen_logger.info(log)
to_save.update({'recover_lengths': recover_lengths})
if hasattr(args, 'output_dir'):
torch.save(to_save, open(os.path.join(args.output_dir, "stats.pt"), 'wb'))
def main(args):
logger.info(f"Args: {json.dumps(args.__dict__, indent=2, sort_keys=True)}")
spm_path = os.path.join('spm', args.spm, "spm.model")
logger.info(f"Loading tokenizer from {spm_path}")
tokenizer = Tokenizer(spm_path)
args.ntoken = ntoken = len(tokenizer)
args.branching_factor = min([args.branching_factor, args.ntoken])
logger.info(f" Vocab size: {ntoken}")
n_queries_str = f"{f'only {args.n_queries} samples' if args.n_queries else 'all'} quries from"
logger.info(f"Reading a dataset ({n_queries_str} test.query.txt)")
seen_set = set(read_data(os.path.join(args.data_dir, "train.query.txt"), min_len=args.min_len))
test_data = read_data(os.path.join(args.data_dir, "test.query.txt"), min_len=args.min_len)
if args.n_queries:
random.seed(args.seed)
test_data = random.sample(test_data, args.n_queries)
n_seen_test_data = len([x for x in test_data if x in seen_set])
n_unseen_test_data = len(test_data) - n_seen_test_data
logger.info(f" Number of test data: {len(test_data):8d} (seen {n_seen_test_data}, unseen {n_unseen_test_data})")
logger.info(f"Loading model from {args.model_dir}")
model = model_load(args.model_dir)
model = model.to(device)
logger.info('Generation starts!')
with torch.no_grad():
generate(model, tokenizer, test_data, args, seen_set=seen_set, calc_mrl=args.calc_mrl)
if __name__ == "__main__":
main(get_args())