Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

3章[P.76] pickleライブラリのインストールが必要なようです #50

Open
y14a-k331 opened this issue Mar 20, 2020 · 0 comments

Comments

@y14a-k331
Copy link

初版 3章P.76にてpickleを使う1節がありますが、
事前にimport pickleと記述してライブラリをインストールしておく必要があるようです。
テキストにその記載がないように思われるので、念の為投稿します!

P.74 - 77をまとめて記述すると以下のようになるかと思います。
(P.75の画像表示のくだりを除く)

import os, sys
sys.path.append(os.pardir)
import numpy as np
from dataset.mnist import load_mnist
from PIL import Image
import pickle #ここを新しく記述!

def img_show(img):
    pil_img = Image.fromarray(np.uint8(img))
    pil_img.show()

def get_data():
    (x_train, t_train),(x_test, t_test) = \
    load_mnist(normalize = True, flatten = True, one_hot_label=False)
    return x_test, t_test

def init_network():
    with open("sample_weight.pkl", 'rb') as f:
        network = pickle.load(f)
    return network

def predict(network, x):
    W1, W2, W3 = network['W1'], network['W2'], network['W3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']
    
    a1 = np.dot(x, W1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1, W2) + b2
    z2 = sigmoid(a2)
    a3 =np.dot(z2, W3) + b3
    y = softmax(a3)
    
    return y

def sigmoid(x):
    return 1/(1 + np.exp(-x))

def softmax(a):
    c = np.max(a)
    exp_a = np.exp(a - c)
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a
    
    return y

x,t = get_data()
network = init_network()

accuracy_cnt = 0
for i in range(len(x)):
    y = predict(network, x[i])
    p = np.argmax(y)
    if p == t[i]:
        accuracy_cnt += 1

print("Accuracy:" + str(float(accuracy_cnt) / len(x)))

(以上)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant