-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcfp.html
224 lines (177 loc) · 11.3 KB
/
cfp.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<link rel="shortcut icon" href="../../assets/ico/favicon.ico">
<title>Machine Learning in HPC Environments - Call for Papers</title>
<!-- Bootstrap core CSS -->
<link href="./dist/css/bootstrap.min.css" rel="stylesheet">
<!-- Just for debugging purposes. Don't actually copy this line! -->
<!--[if lt IE 9]><script src="../../assets/js/ie8-responsive-file-warning.js"></script><![endif]-->
<!-- HTML5 shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
<!-- Custom styles for this template -->
<link href="rrcf2014.css" rel="stylesheet">
</head>
<!-- NAVBAR
================================================== -->
<body>
<div class="navbar-wrapper">
<div class="container">
<div class="navbar navbar-inverse navbar-static-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="brand" href="index.html"> <img src="images/mlhpc.png" alt="MLHPC2018"></a>
</div>
<div class="navbar-collapse collapse pull-right">
<ul class="nav navbar-nav">
<li class="active"><a href="index.html">Home</a></li>
<li><a href="http://sc17.supercomputing.org/attend">Venue</a></li>
<li><a href="index.html#important-dates">Important Dates</a></li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Information<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="cfp.html">Call for Papers</a></li>
<!-- <li><a href="keynotespeakers.html">Keynotes</a></li> -->
<li><a href="program.html">Program</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Committees<b class="caret"></b></a>
<ul class="dropdown-menu">
<li><a href="organizingcommittee.html">Organizing Committee</a></li>
<li><a href="steeringcommittee.html">Steering Committee</a></li>
<li><a href="programcommittee.html">Program Committee</a></li>
</ul>
</li>
<li><a href="index.html#contact">Contact</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
<div class="container marketing navbar-spacing">
<div class="row">
<div class="col-md-8">
<h2 class="featurette-heading">Call for <span class="text-muted">Papers</span></h2>
<!--<p class="lead">
TBA
</p>-->
<p>
The intent of this workshop is to bring together researchers, practitioners, and scientific communities to discuss methods that utilize extreme scale systems for machine learning. This workshop will focus on the greatest challenges in utilizing HPC for machine learning and methods for exploiting data parallelism, model parallelism, ensembles, and parameter search. We invite researchers and practitioners to participate in this workshop to discuss the challenges in using HPC for machine learning and to share the wide range of applications that would benefit from HPC powered machine learning.
</p>
<p>
In recent years, the models and data available for machine learning (ML) applications have grown dramatically. High performance computing (HPC) offers the opportunity to accelerate performance and deepen understanding of large data sets through machine learning. Current literature and public implementations focus on either cloud-‐based or small-‐scale GPU environments. These implementations do not scale well in HPC environments due to inefficient data movement and network communication within the compute cluster, originating from the significant disparity in the level of parallelism. Additionally, applying machine learning to extreme scale scientific data is largely unexplored. To leverage HPC for ML applications, serious advances will be required in both algorithms and their scalable, parallel implementations.
</p>
<h3 class="topics-header">Topics will include but will not be limited to:</h3>
<ul class="topics-list">
<li>Machine learning models, including deep learning, for extreme scale systems</li>
<li>Enhancing applicability of machine learning in HPC (e.g. feature engineering, usability)</li>
<li>Learning large models/optimizing hyper parameters (e.g. deep learning, representation learning)</li>
<li>Facilitating very large ensembles in extreme scale systems</li>
<li>Training machine learning models on large datasets and scientific data</li>
<li>Overcoming the problems inherent to large datasets (e.g. noisy labels, missing data, scalable ingest)</li>
<li>Applications of machine learning utilizing HPC</li>
<li>Future research challenges for machine learning at large scale.</li>
<li>Large scale machine learning applications</li>
</ul>
<p>
Authors are invited to submit full papers with unpublished, original work of 8-12 pages. Submissions will be subject to a double blind peer review process. Submissions will be selected to include both application focused work utilizing ML and HPC and novel methods enabling ML on HPC.
All papers should be formatted using the IEEE conference format.<a href="https://www.ieee.org/conferences/publishing/templates.html">https://www.ieee.org/conferences/publishing/templates.html</a>
In support of the SC reproducibilty initiative, we also encourage authors to include reproduciblity appendices: <a href="https://sc18.supercomputing.org/submit/sc-reproducibility-initiative/">https://sc18.supercomputing.org/submit/sc-reproducibility-initiative/</a>
All accepted papers (subject to post-review revisions) will be published in the IEEE Xplore library by IEEE TCHPC.
Papers will be submitted through the main SC submissions page <a href="https://submissions.supercomputing.org">https://submissions.supercomputing.org</a>.
</p>
</div>
<div class="col-md-3 col-md-offset-1">
<h2 class="featurette-heading"></h2> <!-- spacing to match main column -->
<h3>Important Links</h3>
<p class="text-muted">
Authors are invited to submit full papers with unpublished, original work of 8-12 pages. Submissions will be subject to a double blind peer review process. Submissions will be selected to include both application focused work utilizing ML and HPC and novel methods enabling ML on HPC.
All papers should be formatted using the IEEE conference format.
In support of the SC reproducibilty initiative, we also encourage authors to include reproduciblity appendices: <a href="https://sc18.supercomputing.org/submit/sc-reproducibility-initiative/">https://sc18.supercomputing.org/submit/sc-reproducibility-initiative/</a>
All accepted papers (subject to post-review revisions) will be published in the IEEE Xplore library by IEEE TCHPC.
Papers will be submitted through the main SC submissions page <a href="https://submissions.supercomputing.org">https://submissions.supercomputing.org</a>.
</p>
<!--
<p>
<a href="http://www.acm.org/sigs/publications/proceedings-templates">Paper templates</a>
<br/>
<a href="https://www.easychair.org/conferences/?conf=mlhpc2018">Paper submission</a>
</p>
-->
<div class="fine-print">
<p style="color:red;">
REVIEWS WILL BE DOUBLE BLIND. PLEASE REMOVE AUTHOR NAMES FROM SUBMITTED DOCUMENT!
</p>
<p class="text-muted">
Papers must be 8-12 pages in length, written in English, and be formatted according to the IEEE format guidelines linked above.
</p>
<p class="text-muted">
All submissions will be peer-reviewed for correctness, originality, technical
strength, significance, quality of presentation, and relevance to the workshop topics
of interest, by at least 3 reviewers. Submitted papers may not have appeared in or be
under consideration for another workshop, conference or a journal, nor may they be
under review or submitted to another forum during the MLHPC review process.
</p>
<p class="text-muted">
All accepted papers (subject to post-review revisions) will be published in cooperation with IEEE TCHPC.
</p>
<p>
<font color="red">UPDATED July 31, 2018. There will be no further extension.</font>
</p>
<p>
<strike>August 17, 2018</strike><font color="red"> September 1, 2018</font> – Submission deadline
</p>
<p>
September 14, 2018 – Notification of Acceptance
</p>
<p>
September 28, 2018 – Camera-ready submission due
</p>
<p>
November 11-12, 2018– Workshop
</p>
</div>
</div>
</div>
<hr class="featurette-divider">
<!-- /END THE FEATURETTES -->
<!-- FOOTER -->
<footer>
<div style="width: 100%;overflow:auto;">
<div style="float:left; width: 50%">
<a name="contact"></a>
<p><b>Contact: Steven R. Young</b>, youngsr "at" ornl.gov</p>
<p>© 2018 Oak Ridge National Laboratory</p>
</div>
<div style="float:right;">
<p>In cooperation with</p>
<a class="brand" href="https://tc.computer.org/tchpc/"><img src="images/tchpc_logo_cmyk.png" alt="IEEE TCHPC"></a>
</div>
</div>
<p class="pull-right"><a href="#">Back to top</a></p>
</footer>
</div><!-- /.container -->
<!-- Bootstrap core JavaScript
================================================== -->
<!-- Placed at the end of the document so the pages load faster -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.0/jquery.min.js"></script>
<script src="./dist/js/bootstrap.min.js"></script>
<script src="./assets/js/docs.min.js"></script>
</body>
</html>