forked from AI-sandbox/gnomix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgnomix.py
407 lines (332 loc) · 15.8 KB
/
gnomix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import gzip
import numpy as np
import os
import pandas as pd
import pickle
import sys
import yaml
from src.utils import run_shell_cmd, join_paths, read_vcf, vcf_to_npy, npy_to_vcf, update_vcf
from src.utils import read_genetic_map, save_dict, load_dict, read_headers
from src.preprocess import load_np_data, data_process
from src.postprocess import get_meta_data, write_msp, write_fb, msp_to_lai, msp_to_bed
from src.visualization import plot_cm, plot_chm
from src.laidataset import LAIDataset
from src.model import Gnomix
CLAIMER = 'When using this software, please cite: \n' + \
'Helgi Hilmarsson, Arvind S Kumar, Richa Rastogi, Carlos D Bustamante, \n' + \
'Daniel Mas Montserrat, Alexander G Ioannidis: \n' + \
'"High Resolution Ancestry Deconvolution for Next Generation Genomic Data" \n' + \
"https://www.biorxiv.org/content/10.1101/2021.09.19.460980v1"
def load_model(path_to_model, verbose=True):
if verbose:
print("Loading model...")
if path_to_model[-3:]==".gz":
with gzip.open(path_to_model, 'rb') as unzipped:
model = pickle.load(unzipped)
else:
model = pickle.load(open(path_to_model,"rb"))
return model
def run_inference(base_args, model, visualize, snp_level=False, bed_file_output=False, verbose=False):
if verbose:
print("Loading and processing query file...")
query_file = base_args["query_file"]
chm = base_args["chm"]
output_path = base_args["output_basename"]
gen_map_df = model.gen_map_df
# Load and process user query vcf file
query_vcf_data = read_vcf(query_file, chm=chm, fields="*")
X_query, vcf_idx, fmt_idx = vcf_to_npy(query_vcf_data, model.snp_pos, model.snp_ref, return_idx=True, verbose=verbose)
# predict and finding effective prediction for intersection of query SNPs and model SNPs positions
if verbose:
print("Inferring ancestry on query data...")
B_query = model.base.predict_proba(X_query)
if not base_args["phase"]:
y_proba_query = model.smooth.predict_proba(B_query)
y_pred_query = np.argmax(y_proba_query, axis=-1)
else:
X_query_phased, y_pred_query = model.phase(X_query, B=B_query)
if verbose:
print("Writing phased SNPs to disk...")
U = {
"variants/REF": model.snp_ref[fmt_idx],
"variants/ALT": model.snp_alt[fmt_idx].reshape(len(fmt_idx),1)
}
query_vcf_data_phase = update_vcf(query_vcf_data, mask=vcf_idx, Updates=U)
query_phased_prefix = output_path + "/" + "query_file_phased"
inf_headers = read_headers(query_file)
npy_to_vcf(query_vcf_data_phase, X_query_phased[:,fmt_idx], query_phased_prefix, headers=inf_headers)
# copy header to preserve it
y_proba_query = model.predict_proba(X_query_phased)
# writing the result to disk
if verbose:
print("Saving results...")
meta_data = get_meta_data(chm, model.snp_pos, query_vcf_data['variants/POS'], model.W, model.M, gen_map_df)
out_prefix = output_path + "/" + "query_results"
write_msp(out_prefix, meta_data, y_pred_query, model.population_order, query_vcf_data['samples'])
write_fb(out_prefix, meta_data, y_proba_query, model.population_order, query_vcf_data['samples'])
# write the snp level results (BETA)
if snp_level:
msp_to_lai(msp_file=out_prefix+".msp", positions=query_vcf_data['variants/POS'], lai_file=out_prefix+".lai")
if bed_file_output:
bed_root = output_path + "/" + "query_results_bed"
if not os.path.exists(bed_root):
os.makedirs(bed_root)
msp_to_bed(msp_file=out_prefix+".msp", root=bed_root, pop_order=model.population_order)
# visualize results
if visualize:
vis_path = join_paths(output_path, "visual", verb=False)
msp_df = pd.read_csv(out_prefix+".msp", sep="\t", skiprows=[0])
for sample_id in query_vcf_data['samples']:
sample_path = join_paths(vis_path, sample_id, verb=False)
plot_chm(sample_id, msp_df, img_name=sample_path+"/chromosome_painting")
return
def get_data(data_path, generations, window_size_cM):
# ------------------ Meta ------------------
assert(type(generations)==dict), "Generations must be a dict with list of generations to read in for each split"
laidataset_meta_path = os.path.join(data_path,"metadata.pkl")
laidataset_meta = load_dict(laidataset_meta_path)
snp_pos = laidataset_meta["pos_snps"]
snp_ref = laidataset_meta["ref_snps"]
snp_alt = laidataset_meta["alt_snps"]
pop_order = laidataset_meta["num_to_pop"]
pop_list = []
for i in range(len(pop_order.keys())):
pop_list.append(pop_order[i])
pop_order = np.array(pop_list)
A = len(pop_order)
C = len(snp_pos)
M = int(round(window_size_cM*(C/(100*laidataset_meta["morgans"]))))
meta = {
"A": A, # number of ancestry
"C": C, # chm length
"M": M, # window size in SNPs
"snp_pos": snp_pos,
"snp_ref": snp_ref,
"snp_alt":snp_alt,
"pop_order": pop_order
}
# ------------------ Process data ------------------
def read(split):
paths = [os.path.join(data_path,split,"gen_"+str(gen)) for gen in generations[split]]
X_files = [p + "/mat_vcf_2d.npy" for p in paths]
labels_files = [p + "/mat_map.npy" for p in paths]
X_raw, labels_raw = [load_np_data(f) for f in [X_files, labels_files]]
X, y = data_process(X_raw, labels_raw, M)
return X, y
X_t1, y_t1 = read("train1")
X_t2, y_t2 = read("train2")
X_v, y_v = (None, None)
if generations.get("val") is not None:
X_v, y_v = read("val")
data = ((X_t1, y_t1), (X_t2, y_t2), (X_v, y_v))
return data, meta
def train_model(config, data_path, verbose):
# data_path contains - train1/, train2/, val/, metadata, sample_maps/
rm_simulated_data=config["simulation"]["rm_data"]
model_name=config["model"].get("name", "model")
inference=config["model"].get("inference", "default")
window_size_cM=config["model"].get("window_size_cM")
smooth_window_size=config["model"].get("smooth_size")
n_cores=config["model"].get("n_cores", None)
retrain_base=config["model"].get("retrain_base")
calibrate=config["model"].get("calibrate")
context_ratio=config["model"].get("context_ratio")
chm = base_args["chm"]
# option to bypass validation
ratios = config["simulation"]["splits"]["ratios"]
validate = True if ratios.get("val") else False
generations = config["simulation"]["splits"]["gens"]
if validate == False:
del generations["val"]
output_path = base_args["output_basename"]
if not os.path.exists(output_path):
os.makedirs(output_path)
# Either load pre-trained model or simulate data from reference file, init model and train it
# Processing data
if verbose:
print("Reading data...")
data, meta = get_data(data_path, generations, window_size_cM)
# init model
model = Gnomix(C=meta["C"], M=meta["M"], A=meta["A"], S=smooth_window_size,
snp_pos=meta["snp_pos"], snp_ref=meta["snp_ref"], snp_alt=meta["snp_alt"],
population_order=meta["pop_order"],
mode=inference, calibrate=calibrate,
n_jobs=n_cores, context_ratio=context_ratio, seed=config["seed"])
# train it
if verbose:
print("Building model...")
model.train(data=data, retrain_base=retrain_base, evaluate=True, verbose=verbose)
# write gentic map df
model.write_gen_map_df(load_dict(os.path.join(data_path,"gen_map_df.pkl")))
# store it
model_repo = join_paths(output_path, "models", verb=False)
model_repo = join_paths(model_repo, model_name + "_chm_" + str(chm), verb=False)
model_path = model_repo + "/" + model_name + "_chm_" + str(chm) + ".pkl"
pickle.dump(model, open(model_path,"wb"))
# brief analysis
if verbose:
print("Analyzing model performance...")
analysis_path = join_paths(model_repo, "analysis", verb=False)
cm_path = analysis_path+"/confusion_matrix_{}.txt"
cm_plot_path = analysis_path+"/confusion_matrix_{}_normalized.png"
analysis_sets = ["train", "val"] if validate else ["train"]
for d in analysis_sets:
cm, idx = model.Confusion_Matrices[d]
n_digits = int(np.ceil(np.log10(np.max(cm))))
np.savetxt(cm_path.format(d), cm, fmt='%-'+str(n_digits)+'.0f')
plot_cm(cm, labels=model.population_order[idx], path=cm_plot_path.format(d))
if verbose:
print("Estimated "+d+" accuracy: {}%".format(model.accuracies["smooth_"+d+"_acc"]))
# write the model parameters of type int, float, str into a file config TODO: test
model_config_path = os.path.join(model_repo, "config.txt")
model.write_config(model_config_path)
if verbose:
print("Model, info and analysis saved at {}".format(model_repo))
print("-"*80)
if rm_simulated_data:
if verbose:
print("Removing simulated data...")
splits_to_rem = ["train1","train2","val"] if validate else ["train1","train2"]
for split in splits_to_rem: # train1, train2, val (if val is there)
chm_path = join_paths(data_path, split, verb=False)
remove_data_cmd = "rm -r " + chm_path
run_shell_cmd(remove_data_cmd, verbose=False)
return model
def simulate_splits(base_args,config,data_path):
# build LAIDataset object
chm = base_args["chm"]
reference = base_args["reference_file"]
genetic_map = base_args["genetic_map_file"]
sample_map = base_args["sample_map_file"]
outdir = base_args["output_basename"]
laidataset = LAIDataset(chm, reference, genetic_map, seed=config["seed"])
laidataset.buildDataset(sample_map)
# create output directories
if not os.path.exists(outdir):
os.makedirs(outdir)
if not os.path.exists(data_path):
os.makedirs(data_path)
sample_map_path = os.path.join(data_path,"sample_maps")
if not os.path.exists(sample_map_path):
os.makedirs(sample_map_path)
# split sample map and write it.
splits = config["simulation"]["splits"]["ratios"]
if len(laidataset) <= 25:
if splits.get("val"):
print("WARNING: Too few samples to run validation.")
del config["simulation"]["splits"]["ratios"]["val"]
laidataset.create_splits(splits,sample_map_path)
# TODO
# write metadata into data_path/metadata.yaml
# check lines 94 to 96 where this is read...
save_dict(laidataset.metadata(), os.path.join(data_path,"metadata.pkl"))
# Save genetic map df and store it inside model later after training
gen_map_df = read_genetic_map(genetic_map, chm)
save_dict(gen_map_df, os.path.join(data_path,"gen_map_df.pkl"))
# get num_outs
split_generations = config["simulation"]["splits"]["gens"]
r_admixed = config["simulation"]["r_admixed"]
num_outs = {}
min_splits = {"train1":800,"train2":150,"val":50}
for split in splits:
total_sim = max(len(laidataset.return_split(split))*r_admixed, min_splits[split])
num_outs[split] = int(total_sim/len(split_generations[split]))
if verbose:
print("Running Simulation...")
for split in splits:
split_path = os.path.join(data_path, split)
if not os.path.exists(split_path):
os.makedirs(split_path)
for gen in split_generations[split]:
laidataset.simulate(num_outs[split],
split=split,
gen=gen,
outdir=os.path.join(split_path,"gen_"+str(gen)),
return_out=False)
return
if __name__ == "__main__":
print("...")
# Citation
print("-"*80+"\n"+"-"*35+" Gnomix "+"-"*35 +"\n"+"-"*80)
print(CLAIMER)
print("-"*80+"\n"+"-"*80+"\n"+"-"*80)
# Infer mode from number of arguments
mode = None
if len(sys.argv) == 6:
mode = "pre-trained"
if len(sys.argv) == 8 or len(sys.argv) == 9:
mode = "train"
# Usage message
if mode is None:
if len(sys.argv) > 1:
print("Error: Incorrect number of arguments.")
print("Usage when training a model from scratch:")
print(" $ python3 gnomix.py <query_file> <output_basename> <chr_nr> <phase> <genetic_map_file> <reference_file> <sample_map_file>")
print("Usage when using a pre-trained model:")
print(" $ python3 gnomix.py <query_file> <output_basename> <chr_nr> <phase> <path_to_model>")
sys.exit(0)
# Deconstruct CL arguments
base_args = {
'mode': mode,
'query_file': sys.argv[1] if sys.argv[1].strip() != "None" else None,
'output_basename': sys.argv[2],
'chm': sys.argv[3],
'phase': True if sys.argv[4].lower() == "true" else False
}
if not os.path.exists(base_args["output_basename"]):
os.makedirs(base_args["output_basename"])
base_args["config_file"] = "./config.yaml"
if mode == "train":
base_args["genetic_map_file"] = sys.argv[5]
base_args["reference_file"] = sys.argv[6]
base_args["sample_map_file"] = sys.argv[7]
if len(sys.argv) == 9:
base_args["config_file"] = sys.argv[8]
elif mode == "pre-trained":
base_args["path_to_model"] = sys.argv[5]
with open(base_args["config_file"],"r") as file:
config = yaml.load(file, Loader=yaml.UnsafeLoader)
if mode == "pre-trained":
print("Launching in pre-trained mode...")
model = load_model(base_args["path_to_model"], verbose=True)
# Update changable model parameters for this particular execution
model.n_cores = config["model"].get("n_cores", None)
model.calibrate = config["model"].get("calibrate")
model.smooth.calibrate = config["model"].get("calibrate")
# TEMPORARY FOR BACKWARDS COMPATIBILITY FOR MODELS TRAINED BEFORE 10/2021
model.base.vectorize = True
else:
print("Launching in training mode...")
# process args here...
verbose = config["verbose"]
if config["simulation"]["splits"]["ratios"].get("val") == 0:
del config["simulation"]["splits"]["ratios"]["val"]
if not config["simulation"]["splits"].get("gens"):
generations = config["simulation"]["gens"]
gens_with_zero = list(set(generations + [0]))
gens_without_zero = [generation for generation in generations if generation != 0]
config["simulation"]["splits"]["gens"] = {
"train1": gens_with_zero,
"train2": generations,
"val": gens_without_zero
}
# make sure data is ready...
if config["simulation"]["run"]==False and config["simulation"]["path"] is not None:
print("Using pre-simulated data from: ",config["simulation"]["path"])
config["simulation"]["rm_data"] = False # this must be false if using pre-generated data regardless of what input is given for safety reasons!
data_path = config["simulation"]["path"] # path with train1/ train2/ val/ metadata.yaml
else:
data_path = os.path.join(base_args["output_basename"],"generated_data")
simulate_splits(base_args, config, data_path) # will create the simulation_output folder
# train the model
if verbose:
print("Training...")
model = train_model(config, data_path, verbose=verbose)
# run inference if applicable.
if base_args["query_file"]:
print("Launching inference...")
run_inference(base_args, model,
visualize=config["inference"]["visualize_inference"],
snp_level=config["inference"]["snp_level_inference"],
bed_file_output=config["inference"]["bed_file_output"],
verbose=True)