diff --git a/cluster/addons/fluentd-gcp/README.md b/cluster/addons/fluentd-gcp/README.md index 7627e43e444a7..ddc349213e20d 100644 --- a/cluster/addons/fluentd-gcp/README.md +++ b/cluster/addons/fluentd-gcp/README.md @@ -11,18 +11,22 @@ Learn more at: https://kubernetes.io/docs/tasks/debug-application-cluster/loggin ## Troubleshooting In Kubernetes clusters in version 1.10.0 or later, fluentd-gcp DaemonSet can be -manually scaled. This is useful e.g. when the applications running in the -cluster are sending a large volume of logs (i.e. over 100kB/s), causing -fluentd-gcp to fail with OOM errors. Conversely, if the applications aren't -generating a lot of logs, it may be useful to reduce the amount of resources -consumed by fluentd-gcp, making them available to other applications. To learn +manually scaled. This is useful e.g. when applications running in the cluster +are sending a large volume of logs (i.e. over 100kB/s), causing fluentd-gcp to +fail with OutOfMemory errors. Conversely, if the applications aren't generating +a lot of logs, it may be useful to reduce the amount of resources consumed by +fluentd-gcp, making these resources available to other applications. To learn more about Kubernetes resource requests and limits, see the official documentation ([CPU][cpu], [memory][memory]). The amount of resources requested by fluentd-gcp on every node in the cluster can be fetched by running following command: ``` -$ kubectl get ds -n kube-system -l k8s-app=fluentd-gcp -o custom-columns=NAME:.metadata.name,CPU_REQUEST:.spec.template.spec.containers[].resources.requests.cpu,MEMORY_REQUEST:.spec.template.spec.containers[].resources.requests.memory,MEMORY_LIMIT:.spec.template.spec.containers[].resources.limits.memory +$ kubectl get ds -n kube-system -l k8s-app=fluentd-gcp \ +-o custom-columns=NAME:.metadata.name,\ +CPU_REQUEST:.spec.template.spec.containers[].resources.requests.cpu,\ +MEMORY_REQUEST:.spec.template.spec.containers[].resources.requests.memory,\ +MEMORY_LIMIT:.spec.template.spec.containers[].resources.limits.memory ``` This will display an output similar to the following: