-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlibDL.py
278 lines (209 loc) · 6.18 KB
/
libDL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#-*- coding=utf8 -*-
import math
import sys
#learning rate
epsilon = 0.5
#make weight
def MakeWeight(x, y):
return [[1.0 for i in range(x)] for j in range(y)]
#read data
def Open_data(filename):
input_file = open(filename)
temp = input_file.read().split('\n')
input_node = []
for i in temp:
if i != '':
input_node.append(map(int, i.split(',')))
return input_node
"""
------------------------------
Calculate Layer's node
------------------------------
"""
#Logistic function(activation function)
def Logistic_Func(x):
return 1.0 / float((1.0 + math.exp(-x)))
#Full connect layer's Calc_func
def FullConect_Func(x, w):
#error process(if can't mult matrix)
if len(x) < len(w[0]):
print "Multiple Faild in FC layer."
return 0.0
next_node = []
#dot product
for i in w:
temp = 0.0
for j in range(len(w)):
temp += x[j] * i[j]
temp += x[-1]
next_node.append(temp)
return next_node
#Convolution layer's Calc_func
def Conv_Func(x, w):
#error process(if can't mult matrix)
if len(x) < len(w):
print "Multiple Faild in Conv layer."
return 0.0
next_node = []
counter = 0
#Convolution
for i in range(len(x)-len(w)):
temp = 0.0
#dot product without bias
for j in range(counter, counter+len(w)-1):
temp += x[j] * w[j-counter]
#bias
temp += w[len(w)-1]
next_node.append(temp)
counter += 1
return next_node
#Max pooling layer's Calc_func
def Max_Pool_Func(x, kernel_size):
next_node = []
counter = 0
while counter < len(x):
max_temp = 0.0
#Add max_node in the kernel to next_node
for i in range(counter, counter + kernel_size - 1):
if max_temp < x[i]:
max_temp = x[i]
next_node.append(max_temp)
counter += kernel_size
return next_node
#Pass full connect layer
def Pass_FC(old_layer, new_layer, w):
new_layer.bp_node = old_layer.node
old_layer.node.append(1)
new_layer.node = FullConect_Func(old_layer.node, w)
new_layer.Do_Logistic()
#Pass convolution layer
def Pass_Conv(old_layer, new_layer, w):
new_layer.bp_node = old_layer.node
old_layer.node.append(1)
new_layer.node = Conv_Func(old_layer.node, w)
new_layer.Do_Logistic()
#pass max_pooling layer
def Pass_Max_Pool(old_layer, new_layer, kernel_size):
new_layer.node = Max_Pool_Func(old_layer.node, kernel_size)
#pass full connect layer
def Pass_FC_Out(old_layer, new_layer, w):
old_layer.node.append(1)
new_layer.node = FullConect_Func(old_layer.node, w)
new_layer.Do_Softmax()
"""
-----------------------------------
Function for back-propagation
-----------------------------------
"""
#Differential logistic function
def Dif_Logistic_Func(x):
new_node = []
for i in x:
new_node.append(Logistic_Func(i) * (1 - Logistic_Func(i)))
return new_node
#Calculate cross entropy
def Cross_Entropy(x, d):
result = []
for i in range(len(x)):
result.append( x[i] - d[i] )
return result
#Calculate output full connect layer's δ
def Out_FC_Delta(node, delta, w):
new_delta = []
temp_s = []
#Pass differential logistic function
node = Dif_Logistic_Func(node)
#(W^T,δ)
for i in range(len(w[0])):
temp_t = 0.0
for j in range(len(w)):
temp_t += w[j][i] * delta[j]
temp_s.append(temp_t)
for i in range(len(node)):
new_delta.append(node[i] * temp_s[i])
return new_delta
#Calculate full connect layer's δ
def FC_Delta(node, delta, w):
new_delta = []
temp_s = []
#Pass differential logistic function
node = Dif_Logistic_Func(node)
#(W^T,δ)
for i in range(len(w[0])):
temp_t = 0.0
for j in range(len(w)):
temp_t += w[j][i] * delta[j]
temp_s.append(temp_t)
for k in range(len(temp_s)):
new_delta.append(node[k] * temp_s[k])
return new_delta
#Calculate convolution layer's δ
def Conv_Delta(layer, delta, w):
new_delta = []
#Pass differential logistic function
node = Dif_Logistic_Func(layer.node)
for i in range(len(layer.bp_node)):
temp_s = 0.0
for j in range(len(w)):
if (i-j >= 0) and (i-j < len(delta)):
temp_s += delta[i-j] * w[j]
new_delta.append(temp_s)
return new_delta
#Calculate max pooling layer's δ
def Max_Pool_Delta(layer, delta):
new_delta = []
#0 replace max node with zero
counter = 0
while counter < len(layer.node):
for i in range(counter, counter+layer.kernel_size):
if layer.bp_node[i] == layer.node[counter]:
new_delta.append(delta[counter])
else:
new_delta.append(0.0)
counter += 1
return new_delta
#Update full connect layer's weight
def FC_Update(x, delta, w):
new_w = []
for i in range(len(w)):
temp = []
#Update w
for j in range(len(w[i])):
temp.append(w[i][j] - epsilon * delta[i] * x[j])
new_w.append(temp)
return new_w
#Update convolution layer's weight
def Conv_Update(node, delta, w):
new_w = []
temp = 0.0
for i in range(len(w)):
#Update w
for j in range(len(node)-len(w)+1):
temp += delta[j] * node[j+i]
new_w.append(w[i] - epsilon * temp)
temp = 0.0
return new_w
"""
----------------------
Layer class
----------------------
"""
class Layer:
def __init__(self, kernel_size):
#Array for store the node information
self.node = []
#kernel_size(for convolution bp and pooling bp)
self.kernel_size = kernel_size
#node information for bp(store pre node)
self.bp_node = []
#Do logistic
def Do_Logistic(self):
self.node = map(Logistic_Func, self.node)
#Softmax function(activation function for output layer)
def Softmax_Func(self, x):
return math.exp(x) / sum(map(math.exp, self.node))
#Do softmax
def Do_Softmax(self):
Sum = sum(map(math.exp, self.node))
temp = lambda x:math.exp(x) / Sum
self.node = map(temp, self.node)