-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclustering.py
307 lines (231 loc) · 9.93 KB
/
clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import cmath
import json
import sys
from argparse import ArgumentParser
from collections import defaultdict
from pathlib import Path
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tslearn.utils import to_time_series_dataset
from tslearn.clustering import TimeSeriesKMeans
from sklearn.metrics import silhouette_score
from utils import load_av_time_data, smooth_data, decimate_data, normalize_string
sys.path.append("mtg-jamendo-dataset/scripts/")
import commons
n_cluster_choices = [3, 5, 10]
def load_data():
"""Load and prepare ground truth in the streamlit cache."""
data_models = pd.read_csv(
data_dir / "mtg-jamendo-predictions.tsv", sep="\t", index_col=0
)
data_av = pd.read_pickle(data_dir / "mtg-jamendo-predictions-av.pk")
data_algos = pd.read_pickle(data_dir / "mtg-jamendo-predictions-algos.pk")
data = pd.concat([data_models, data_av, data_algos], axis=1)
data.index = pd.Index(map(lambda x: int(x.split("/")[1]), data.index))
mtg_jamendo_file = "mtg-jamendo-dataset/data/autotagging.tsv"
tracks, _, _ = commons.read_file(mtg_jamendo_file)
return data, tracks
def get_quadrant_ids(data, quadrant, field):
"""Get the ids of the samples in the specified quadrant."""
quad_rad_ss = {"A+V+": 0, "A-V+": -np.pi / 2, "A+V-": np.pi / 2, "A-V-": -np.pi}
quad_rad_es = {"A+V+": np.pi / 2, "A-V+": 0, "A+V-": np.pi, "A-V-": -np.pi / 2}
quad_rad_s = quad_rad_ss[quadrant]
quad_rad_e = quad_rad_es[quadrant]
return data[data[field].apply(lambda x: x[1] > quad_rad_s and x[1] <= quad_rad_e)]
parser = ArgumentParser()
parser.add_argument("--genre-threshold", type=float, default=0.1)
parser.add_argument("--n-samples-per-genre", type=int, default=200)
parser.add_argument("--smoothing-sigma", type=int, default=5)
parser.add_argument("--decimate-factor", type=int, default=5)
parser.add_argument("--av-model", type=str, default="emomusic")
parser.add_argument(
"--norm", type=str, default="none", choices=["none", "minmax", "zscore"]
)
parser.add_argument("--force", action="store_true")
args = parser.parse_args()
genre_threshold = args.genre_threshold
n_samples_per_genre = args.n_samples_per_genre
smoothing_sigma = args.smoothing_sigma
decimate_factor = args.decimate_factor
av_model = args.av_model
norm_type = args.norm
force = args.force
data_dir = Path("data/")
av_predictions_dir = data_dir / "predictions" / "emomusic-msd-musicnn-2"
results_dir = (
data_dir
/ "clustering"
/ f"clustering_genre_thres_{genre_threshold}_n_samples_{n_samples_per_genre}_smoothing_{smoothing_sigma}_decimate_{decimate_factor}_norm_{norm_type}"
)
results_dir.mkdir(parents=True, exist_ok=True)
# Load ids
with open(data_dir / "clean_tids.json", "r") as f:
tids_clean = set(json.load(f))
# Load data
data, tracks = load_data()
# Normalize AV
data[f"{av_model}-msd-musicnn-2---valence-norm"] = (
data[f"{av_model}-msd-musicnn-2---valence"] - 5
) / 4
data[f"{av_model}-msd-musicnn-2---arousal-norm"] = (
data[f"{av_model}-msd-musicnn-2---arousal"] - 5
) / 4
# Load AV timewise data
data_av_clean, tids_clean = load_av_time_data(tids_clean, tracks)
print(f"Kept {len(data_av_clean)} samples")
data_av_smooth = smooth_data(data_av_clean, smoothing_sigma)
data_av_decimated = decimate_data(data_av_smooth, decimate_factor)
data_styles = data.filter(like="genre_discogs400-discogs-effnet-1")
data_genres = data_styles.groupby(lambda x: x.split("---")[1], axis=1).max()
data_genres = data_genres[data_genres.index.isin(tids_clean)].copy()
genres = set(data_genres.columns)
genres_blacklist = set(["Non-Music", "Stage & Screen", "Children's"])
genres_good = genres - genres_blacklist
data_selected = dict()
for genre in list(genres_good):
genre_n = normalize_string(genre)
results_file = results_dir / f"kmeans_centers_{genre_n}.npy"
if results_file.exists() and not force:
print(f"Skipping genre {genre}, already processed.")
continue
data_selected[genre] = dict()
# Getting top activations for this genre
data_genre = data_genres[data_genres[genre] > genre_threshold].copy()
data_genre["source"] = "Not assigned"
tids = list(data_genre.index)
if len(tids) < n_samples_per_genre:
print(f"Genre {genre} has {len(tids)} samples, using all of them.")
else:
for max_tracks_per_album in range(1, 10):
print(f"Keeping {max_tracks_per_album} samples per album for genre {genre}")
albums_dict = defaultdict(int)
tids_album_duplicated = set()
for tid in tids:
album = tracks[tid]["album_id"]
if albums_dict[album] >= max_tracks_per_album:
tids_album_duplicated.add(tid)
albums_dict[album] += 1
tids_clean = set(tids) - tids_album_duplicated
if len(tids_clean) >= n_samples_per_genre:
print(
f" {len(tids_clean)} samples, {max_tracks_per_album} tracks per album, enough."
)
break
data_genre = data_genre.loc[list(tids_clean)]
# Get AV data
v_norm_field = f"{av_model}-msd-musicnn-2---valence-norm"
a_norm_field = f"{av_model}-msd-musicnn-2---arousal-norm"
data_genre.loc[data_genre.index, v_norm_field] = data.loc[
data_genre.index, v_norm_field
]
data_genre.loc[data_genre.index, a_norm_field] = data.loc[
data_genre.index, a_norm_field
]
if len(data_genre) < n_samples_per_genre:
print(f"Genre {genre} has {len(data_genre)} samples, using all of them.")
data_selected[genre]["av_cluster_0"] = data_genre
else:
# get prototypical av curves for this genre
data_av_genre = {
k: v for k, v in data_av_decimated.items() if k in data_genre.index
}
if norm_type == "zscore":
data_av_genre = {
k: (v - v.mean(axis=0)) / v.std(axis=0)
for k, v in data_av_genre.items()
}
tids_av_genre = list(data_av_genre.keys())
data_av_genre_ts = to_time_series_dataset(list(data_av_genre.values()))
best_sil_score = -np.inf
best_n_clusters = 0
best_kmeans = None
best_y_distances = None
for n_clusters in n_cluster_choices:
n_samples_per_cluster = n_samples_per_genre // n_clusters
print(
f"training k-means for {genre} with {len(data_av_genre_ts)} samples, and {n_clusters} clusters."
)
kmeans = TimeSeriesKMeans(
n_clusters=n_clusters, metric="dtw", max_iter_barycenter=10
)
y_distances = kmeans.fit_transform(data_av_genre_ts)
cluster_labels = kmeans.predict(data_av_genre_ts)
# compute silhouette score on the time-averaged AV curves
# (we have seen that av. values preserve most of the info).
data_av_genre_ts_mean = np.array(
[v.mean(axis=0) for v in data_av_genre.values()]
)
print("av. data shape", data_av_genre_ts_mean.shape)
sil_score = silhouette_score(data_av_genre_ts_mean, cluster_labels)
print(
f"Silhouette score for {genre} with {n_clusters} clusters: {sil_score:.4f}"
)
if sil_score > best_sil_score:
best_n_clusters = n_clusters
best_sil_score = sil_score
best_kmeans = kmeans
best_y_distances = y_distances
else:
print("Silhouette score is not better than the best one, stopping.")
print("Best silhouette score:", best_sil_score)
print("Best number of clusters:", best_n_clusters)
break
np.save(
results_file,
best_kmeans.cluster_centers_,
)
n_samples_per_cluster = n_samples_per_genre // best_n_clusters
sorting = np.argsort(best_y_distances, axis=0)
indices = sorting[:n_samples_per_cluster, :]
fig, ax = plt.subplots()
for i_cluster in range(best_n_clusters):
cluster_centroid = best_kmeans.cluster_centers_[i_cluster]
cluster_centroid_mean = np.mean(cluster_centroid, axis=0)
clust_sample_tids = [tids_av_genre[i] for i in indices[:, i_cluster]]
data_selected[genre][f"av_cluster_{i_cluster}"] = data_genre.loc[
clust_sample_tids
]
data_genre.loc[clust_sample_tids, "source"] = f"av_cluster_{i_cluster}"
# sort byt soruce column
data_genre.sort_values("source", inplace=True)
ax.annotate(
f"C{i_cluster}",
(cluster_centroid_mean[0], cluster_centroid_mean[1]),
)
sns.scatterplot(
data=data_genre, x=v_norm_field, y=a_norm_field, hue="source"
).set_title(genre)
plt.axvline(0, color="k")
plt.axhline(0, color="k")
results_dir.mkdir(parents=True, exist_ok=True)
plt.savefig(results_dir / f"{genre_n}_av_scatter.png")
plt.close(fig)
p_norm_field = "emomusic-msd-musicnn-2---av-polar-norm"
data_genre[p_norm_field] = [
cmath.polar(
complex(data_genre[v_norm_field][idx], data_genre[a_norm_field][idx])
)
for idx in data_genre.index
]
data_quadrants = {
q: get_quadrant_ids(data_genre, q, p_norm_field)
for q in ("A+V+", "A-V+", "A+V-", "A-V-")
}
for q, yids in data_quadrants.items():
print(f"{q} has {len(yids)} ids.")
results_file = results_dir / "candidates.json"
if results_file.exists():
with open(results_file, "r") as f:
data_out = json.load(f)
else:
data_out = dict()
for k, v in data_selected.items():
data_out[k] = dict()
for k2, v2 in v.items():
data_out[k][k2] = list(v2.index)
print("Save resulting list of candidates")
with open(results_dir / "candidates.json", "w") as f:
json.dump(data_out, f)
print("done!")