This repository has been archived by the owner on Apr 16, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdata.py
393 lines (321 loc) · 13.3 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#/usr/bin/python3
# -*- coding: utf-8 -*-
# library modules
import os
import logging
from collections import namedtuple
from random import shuffle
from random import sample
from math import ceil
# External library modules
import numpy as np
from scipy.io import loadmat
from PIL import Image
# local modules
from utils import preprocess
from utils import gen_mean_activity
from utils import Store
from data_augment import augment
class LSVRC2010:
"""
Read the train data of ILSVRC2010.
Considering the :py:path: is `~/datasets/ILSVRC2010`
this class assumes the folder structure as follows
|____devkit-1.0
| |____data
| | |____ILSVRC2010_validation_ground_truth.txt
| | |____meta.mat
|____ILSVRC2010_img_train
| |____n01443537
| | |____n01443537_1.JPEG
|____ILSVRC2010_img_val
| |____ILSVRC2010_val_00000001.JPEG
"""
def __init__(self, path, batch_size, augment=False):
"""
Find which folder has what kind of images
Find which image belongs to which folder and what category.
:param path: The directory path for the ILSVRC2010 training data
"""
self.logger = logging.getLogger('AlexNet.LSVRC2010')
self.batch_size = batch_size
self.augment = augment
self.image_size = (227, 227, 3)
# Directory paths
self.base_dir = path
self.train_dir = os.path.join(path, 'ILSVRC2010_img_train')
self.val_dir = os.path.join(path, 'ILSVRC2010_img_val')
self.test_dir = os.path.join(path, 'ILSVRC2010_img_test')
# Store the folder name to label info
self.wnid2label = {}
self.gen_labels()
self.lsvrcid2wnid = {}
self.store_lsvrcid2wnid()
self.image_names = {}
self.find_image_names()
self.image_names_val = {}
self.find_image_names_val()
self.image_names_test = {}
self.find_image_names_test()
if not os.path.exists('mean.pkl'):
gen_mean_activity(self.train_dir)
def gen_labels(self):
"""
Store the folder to label map in a dict.
This will be helpful while creating one-hot encodings.
:Example:
>>> self.folders = ['hi', 'Alex', 'deep']
>>> self.get_folder_indices()
{'deep': 1, 'hi': 2, 'Alex': 0}
"""
self.wnid2label = dict((folder, i) for i, folder in enumerate(sorted(os.listdir(self.train_dir))))
self.logger.info("There are %d categories in total", len(self.wnid2label))
def store_lsvrcid2wnid(self):
"""
Store the mapping of ILSVRC2010_ID to WNID
For more information about what ILSVRC2010_ID
and WNID is, read the devkit-1.0 readme
that you can find for ILSVRC2010.
For short, WNID are the folder names in the training
folder and ILSVRC2010_ID is an id that is assigned
to each folder category to uniquely identify the category
for that folder
After running this you should have
>>> self.lsvrcid2wnid[330] == 'n01910747'
"""
mat = loadmat(os.path.join(self.base_dir, 'devkit-1.0',
'data', 'meta.mat'))
synsets = mat['synsets']
for i in range(len(synsets)):
# matlab datas are not coming nicely for python objects ;)
self.lsvrcid2wnid[synsets[i][0][0][0][0]] = str(synsets[i][0][1][0])
def find_image_names(self):
"""
Find category information for all training images.
For all images that is present in the training directory
find which WNID(folder) and label that image belongs to
and store it in :py:self.image_names:
If there are 1000 images in folder `f`, then all
images inside `f` are `f_0.JPEG`, `f_1.JPEG`, ..., `f_999.JPEG`.
But not necessarily as `0, 1, 2, ...`(increasing order from 0).
So better to read what files are present in `f` rather than just
assuming that all files are present in increasing order.
"""
# Each folder belongs to a folder and corresponding label
# This label will represent the number in output softmax
# in the AlexNet graph
category = namedtuple('Category', ['folder', 'label'])
for folder in os.listdir(self.train_dir):
for image in os.listdir(os.path.join(self.train_dir, folder)):
self.image_names[image] = category(folder, self.wnid2label[folder])
self.logger.info("There are %d total training images in the dataset",
len(self.image_names))
def find_image_names_val(self):
"""
Find the label of each validation image
"""
with open(os.path.join(self.base_dir, 'devkit-1.0', 'data',
'ILSVRC2010_validation_ground_truth.txt')) as f:
for image, lsvrcid in zip(sorted(os.listdir(self.val_dir)), f):
self.image_names_val[image] = \
self.wnid2label[self.lsvrcid2wnid[int(lsvrcid.strip())]]
def find_image_names_test(self):
"""
Find the label of each test image
"""
with open(os.path.join(self.base_dir, 'devkit-1.0', 'data',
'ILSVRC2010_test_ground_truth.txt')) as f:
for image, lsvrcid in zip(sorted(os.listdir(self.test_dir)), f):
self.image_names_test[image] = \
self.wnid2label[self.lsvrcid2wnid[int(lsvrcid.strip())]]
def image_path(self, image_name, val=False, test=False):
"""
Return full image path
e.g. ~/datasets/ILSVRC2010/ILSVRC2010_img_train/n03854065/n03854065_297.JPEG
or
e.g. ~/datasets/ILSVRC2010/ILSVRC2010_img_val/ILSVRC2010_val_00000303.JPEG
:param image_name: The name of the image. e.g. n03854065_297.JPEG
"""
if val:
return os.path.join(self.val_dir,
image_name)
if test:
return os.path.join(self.test_dir,
image_name)
return os.path.join(self.train_dir,
self.image_names[image_name].folder,
image_name)
def one_hot(self, labels):
"""
Get the one hot encoding of `:py:labels:`
The size of the output encoding matrix
has to be (batch size x no of categories).
:param labels: list of labels for current batch
:type labels: `list`
"""
batch_size = len(labels)
y_hat = np.zeros((batch_size, len(self.wnid2label)))
y_hat[np.arange(batch_size), labels] = 1
return y_hat
@preprocess
def get_image(self, image_path):
"""
Get the image in the path `image_path`
"""
return Image.open(image_path)
def cur_batch_images(self, images, val=False):
"""
Convert all images in `images` to numpy array
Return numpy size (`:py:self.batch_size:`, 227, 227, 3)
"""
npimages = []
for image in images:
npimages.append(self.get_image(self.image_path(image, val)))
return np.array(npimages)
def cur_batch_labels(self, images, val=False):
"""
Get the one hot encoding for all `images` in one array
"""
labels = []
for image in images:
if val:
labels.append(self.image_names_val[image])
else:
labels.append(self.image_names[image].label)
return self.one_hot(labels)
@property
def gen_batch(self):
"""
A generator which returns `:py:self.batch_size:` of
images(in a numpy array) and corresponding labels
"""
images = list(self.image_names.keys())
shuffle(images)
def get_batch(idx):
"""
Get current batch of data give batch index.
:param idx: The batch index in the dataset
"""
self.logger.debug("Reading batch for index: %d", idx)
_images = images[idx * self.batch_size: (idx + 1) * self.batch_size]
X = self.cur_batch_images(_images)
Y = self.cur_batch_labels(_images)
return X, Y
source = (get_batch, len(self.image_names.keys()),
self.batch_size)
store = Store(source, 10)
batch = store.read()
for i in range(ceil(len(self.image_names.keys()) / self.batch_size)):
yield next(batch)
raise StopIteration
@property
def gen_batch_non_threaded(self):
"""
A generator which returns `:py:self.batch_size:` of
images(in a numpy array) and corresponding labels
"""
images = list(self.image_names.keys())
shuffle(images)
for idx in range(ceil(len(images) / self.batch_size)):
_images = images[idx * self.batch_size: (idx + 1) * self.batch_size]
X = self.cur_batch_images(_images)
Y = self.cur_batch_labels(_images)
yield X, Y
raise StopIteration
@property
def get_batch_val(self):
"""
A generator which returns `:py:self.batch_size:` of
images(in a numpy array) and corresponding labels
for validation dataset
"""
images = list(self.image_names_val.keys())
shuffle(images)
_images = sample(images, self.batch_size)
X = self.cur_batch_images(_images, True)
Y = self.cur_batch_labels(_images, True)
return X, Y
def get_5_patches(self, image_path):
"""
Get 5 patches for an image.
It returns a list of 5 patches(top left, top right,
bottom left, bottom right and center) of an image.
:param image_path: the path of an image
"""
img = Image.open(image_path)
# Resize the shorter size to 256
if img.width < 256:
img = img.resize((256, img.height))
if img.height < 256:
img = img.resize((img.width, 256))
if img.mode != 'RGB':
img = img.convert('RGB')
# Take 5 patches(top left, top right, bottom left, bottom right, center)
img_crop = [None] * 5
img_crop[0] = img.crop((0, 0, self.image_size[0],
self.image_size[1]))
img_crop[1] = img.crop((img.width - self.image_size[0], 0,
img.width - self.image_size[0] + self.image_size[1],
self.image_size[1]))
img_crop[2] = img.crop((0, img.height - self.image_size[1],
self.image_size[0], img.height))
img_crop[3] = img.crop((img.width - self.image_size[0],
img.height - self.image_size[1],
img.width, img.height))
img_crop[4] = img.crop((img.width // 2 - self.image_size[0] // 2,
img.height // 2 - self.image_size[1] // 2,
img.width // 2 - self.image_size[0] // 2 + self.image_size[0],
img.height // 2 - self.image_size[1] // 2 + self.image_size[1]))
patches = [None] * 5
for i, img in enumerate(img_crop):
patches[i] = preprocess(lambda self, img: img, False)(self, img_crop[i])
return patches
@property
def gen_batch_test(self):
"""
A generator which will give test images one by one
after doing preproessing.
For each batch return X, Y
Where X is a list of 5 patches: each patch will have
batch no of images. Y is the labels which size is batch size.
"""
logger_test = logging.getLogger('AlexNetTest.LSVRC2010')
batch_size = 128
images = list(self.image_names_test.keys())
def get_batch(idx):
"""
Get current batch of data give batch index.
:param idx: The batch index in the dataset
"""
logger_test.debug("Reading batch for index: %d", idx)
_images = images[idx * batch_size: (idx + 1) * batch_size]
X = [[] for _ in range(5)]
Y = []
for image in _images:
patches = self.get_5_patches(self.image_path(image, test=True))
for i, patch in enumerate(patches):
X[i].append(patch)
Y.append(self.image_names_test[image])
for i in range(len(X)):
X[i] = np.array(X[i])
return X, np.array(Y)
source = (get_batch, len(self.image_names_test), batch_size)
store = Store(source, 10)
batch = store.read()
for i in range(ceil(len(self.image_names_test) / batch_size)):
yield next(batch)
raise StopIteration
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('image_path', metavar = 'image-path',
help = 'ImageNet dataset path')
args = parser.parse_args()
lsvrc2010 = LSVRC2010(args.image_path, 128)
image_cur_batch = lsvrc2010.gen_batch
first_batch = next(image_cur_batch)
print("The first batch shape:", first_batch[0].shape)
print("The first one hot vector shape:", first_batch[1].shape)
first_batch = lsvrc2010.get_batch_val
print("The first batch shape:", first_batch[0].shape)
print("The first one hot vector shape:", first_batch[1].shape)