-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerate_ER.r
27 lines (25 loc) · 1.01 KB
/
generate_ER.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
## first generate a true network
n <- 10 # size of network
p <- 0.45
lambda <- 0.1
L <- matrix(nrow=n,rbinom(n*n,prob=p,size=1)*rexp(n*n,rate=lambda))
# then reconstruct with a target density of 0.55
model <- calibrate_ER(l=rowSums(L),a=colSums(L),
targetdensity=0.55,nsamples_calib=10)
Lsamp <- sample_HierarchicalModel(l=rowSums(L),a=colSums(L),model=model,
nsamples=10,thin=1e2)
# check row sums
rowSums(L)
rowSums(Lsamp$L[[10]])
# check calibration
mean(Lsamp$L[[10]]>0)
# now an example with some fixed entries
L_fixed <- L
L_fixed[1:(n/2),] <- NA
# then reconstruct with a target density of 0.9
model <- calibrate_ER(l=rowSums(L),a=colSums(L),L_fixed=L_fixed,
targetdensity=0.9,nsamples_calib=10)
Lsamp <- sample_HierarchicalModel(l=rowSums(L),a=colSums(L),L_fixed=L_fixed,
model=model,nsamples=10,thin=1e2)
mean(Lsamp$L[[10]][-(1:(n/2)),]>0) # known entries
mean(Lsamp$L[[10]][(1:(n/2)),]>0) #reconstructed entries