-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerator.py
94 lines (67 loc) · 3.35 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import networkx as nx
import numpy as np
def generate_random_data(seed=42, random_graph='ER', H=None, distribution='exponential', alpha=0.14, n=30):
if random_graph == 'ER':
G = generate_er(n, p=0.8, seed=seed)
elif random_graph == 'SF':
G = generate_scale_free(n, seed=seed)
elif random_graph == 'CP':
G = generate_core_periphery(n, p=0.7, seed=seed)
distributions = {
'exponential' : lambda size: np.random.exponential(1, size=size),
'pareto' : lambda size: np.random.pareto(1, size=size),
'lognormal' : lambda size: np.random.lognormal(0, 1, size=size)
}
adj = nx.to_numpy_array(G)
outdegree = adj.sum(0)
indegree = adj.sum(-1)
liabilities = adj * distributions[distribution]((n, n))
internal_assets = liabilities.sum(-1).reshape((n, 1))
internal_liabilities = liabilities.sum(0).reshape((n, 1))
external_assets = np.array([G.degree(u) for u in G]) * distributions[distribution]((n, 1))
external_liabilities = alpha * external_assets
P_bar = internal_liabilities + external_liabilities
A = np.copy(liabilities)
for i in range(liabilities.shape[0]):
A[i] /= P_bar[i]
wealth = external_assets + internal_assets - external_liabilities - internal_liabilities
# if np.any(wealth < 0):
# return generate_random_data(seed=seed, random_graph=random_graph, distribution=distribution, alpha=alpha)
# else:
return A, P_bar, liabilities, adj, internal_assets, internal_liabilities, outdegree, indegree, external_assets, external_liabilities, wealth, G
def generate_core_periphery(n, p, p_cc = 0.8, p_cp = 0.4, p_pp = 0.1, seed=100):
n_c = int(n ** p)
n_p = n - n_c
sizes = [n_c, n_p]
p = [[p_cc, p_cp], [p_cp, p_pp]]
return nx.generators.community.stochastic_block_model(sizes, p, seed=seed, directed=True)
def generate_scale_free(n, seed=100):
return nx.DiGraph(nx.generators.directed.scale_free_graph(n, alpha=0.5, beta=0.25, gamma=0.25, seed=seed))
def generate_er(n, p=0.8, seed=100):
return nx.generators.random_graphs.gnp_random_graph(n, p, seed=seed, directed=True)
def generate_sbm_pair(n, D, stochastic=False, seed=100):
sizes = [n//2, n//2]
if stochastic:
p = [[1, D], [D, 1]]
G = nx.DiGraph(nx.generators.community.stochastic_block_model(sizes, p, seed=seed, directed=False))
else:
p = [[1, 0], [0, 1]]
G = nx.generators.community.stochastic_block_model(sizes, p, seed=seed, directed=False)
for i in range(0, n // 2 - D, D):
for j in range(D):
for k in range(D):
G.add_edge(i + j, n // 2 + i + k)
G = nx.DiGraph(G)
liabilities = nx.to_numpy_array(G)
outdegree = liabilities.sum(0)
indegree = liabilities.sum(-1)
internal_assets = liabilities.sum(-1).reshape((n, 1))
internal_liabilities = liabilities.sum(0).reshape((n, 1))
external_assets = n * np.ones((n, 1))
external_liabilities = np.ones((n, 1))
P_bar = internal_liabilities + external_liabilities
A = np.copy(liabilities)
for i in range(liabilities.shape[0]):
A[i] /= P_bar[i]
wealth = external_assets + internal_assets - external_liabilities - internal_liabilities
return A, P_bar, liabilities, internal_assets, internal_liabilities, outdegree, indegree, external_assets, external_liabilities, wealth, G