-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsafegraph_dataloader.py
375 lines (289 loc) · 16.8 KB
/
safegraph_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import pandas as pd
import collections
import json
import math
import random
import numpy as np
import networkx as nx
from sklearn.neighbors import NearestNeighbors
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns
import argparse
import os
import sys
from stimuli import *
sns.set_theme()
def get_argparser():
parser = argparse.ArgumentParser()
parser.add_argument('--census_data', default='/home/mp2242/safegraph-census/safegraph_open_census_data')
parser.add_argument('--patterns_data', default='/home/mp2242/safegraph-monthly')
parser.add_argument('--loans_data', default='/home/mp2242/safegraph-loans')
parser.add_argument('--n_neighbors', default=3, type=int)
parser.add_argument('--payroll_data', default='/home/mp2242/financial-contagion/data/business-payroll')
parser.add_argument('--expenditures_data', default='/home/mp2242/financial-contagion/data/consumer-expenditures')
parser.add_argument('--lat', default=42.439499559524485, type=float)
parser.add_argument('--lon', default=-76.49499020058316, type=float)
parser.add_argument('--business_assets', default='/home/mp2242/financial-contagion/data/business-assets')
parser.add_argument('--business_expenses', default='/home/mp2242/financial-contagion/data/business-expenses')
return parser.parse_args()
def degree_plot(G, names=['indegree', 'outdegree'], markers=['x', 'o'], degree_fcns=[lambda G, u: G.in_degree(u), lambda G, u: G.out_degree(u)]):
for name, marker, degree_fcn in zip(names, markers, degree_fcns):
degrees = np.array([degree_fcn(G, v) for v in G])
degrees_values, degrees_counts = np.unique(degrees, return_counts=True)
degrees_counts = np.log(degrees_counts / degrees_counts.sum())
degrees_values = np.log(degrees_values)
p = np.polyfit(degrees_values, degrees_counts, deg=1)
pearsonr = np.corrcoef(degrees_values, degrees_counts)[0, 1]
plt.figure(figsize=(10, 10))
plt.plot(degrees_values, degrees_counts, linewidth=0, marker=marker, color='b', label='Empirical log Frequency, $y \propto x^{{{}}}, \; R^2 = {}$'.format(round(p[0], 1), round(pearsonr, 2)))
plt.xlabel('log Degree')
plt.ylabel('log Frequency')
plt.legend()
plt.savefig('degree.png')
def dwell_workers(u):
result = collections.defaultdict(float)
u_p = json.loads(u)
for key, val in u_p.items():
if key == '>240':
result['workers'] += float(val)
else:
result['non-workers'] += float(val)
result['workers'] /= (result['workers'] + result['non-workers'])
result['non-workers'] /= (result['workers'] + result['non-workers'])
return json.dumps(result)
def create_multi_graph(patterns, expenditures):
G = nx.MultiDiGraph()
expenditures_freq = collections.defaultdict(lambda: collections.defaultdict(float))
for _, x in patterns.iterrows():
naics_code_prefix = int(str(x['naics_code'])[:2])
workers = json.loads(x['workers'])
home_cbg = json.loads(x['visitor_home_cbgs'])
for cbg, val in home_cbg.items():
cbg_workers = int(np.ceil(workers['workers'] * val))
cbg_non_workers = int(np.ceil(val - cbg_workers))
if not expenditures[expenditures['naics_code_prefix'] == naics_code_prefix].empty:
expenditures_freq[cbg][naics_code_prefix] += 1
else:
expenditures_freq[cbg][0] += 1
[G.add_edge(x['placekey'], int(cbg), weight=x['payroll']) for _ in range(cbg_workers)]
for _, x in patterns.iterrows():
naics_code_prefix = int(str(x['naics_code'])[:2])
workers = json.loads(x['workers'])
home_cbg = json.loads(x['visitor_home_cbgs'])
try:
expenditure_naics = expenditures[expenditures['naics_code_prefix'] == naics_code_prefix]['monthly'].iloc[0]
except:
expenditure_naics = expenditures[expenditures['naics_code_prefix'] == 0]['monthly'].iloc[0]
naics_code_prefix = 0
for cbg, val in home_cbg.items():
cbg_workers = int(np.ceil(workers['workers'] * val))
cbg_non_workers = int(np.ceil(val - cbg_workers))
weight = cbg_non_workers * expenditure_naics / expenditures_freq[cbg][naics_code_prefix]
[G.add_edge(int(cbg), x['placekey'], weight=weight) for _ in range(cbg_non_workers)]
nx.set_node_attributes(G, patterns.set_index('placekey')['naics_code'].to_dict(), 'naics_code')
return G
def create_eisenberg_noe_data(G):
n = len(G)
P = np.zeros(shape=(n, n))
L = np.zeros(shape=(n, 1))
C = np.zeros(shape=(n, 1))
B = np.zeros(shape=(n, 1))
A = np.zeros(shape=(n, n))
p_minority = np.zeros(shape=(n, 1))
G = nx.relabel.convert_node_labels_to_integers(G)
for u, v, data in G.edges(data=True):
P[u, v] += data.get('weight', 0)
for u, data in G.nodes(data=True):
L[u] += data.get('L', 0)
C[u] += data.get('assets', 0)
B[u] += data.get('liabilities', 0)
p_minority[u] += data.get('p_minority', 0)
P_bar = B + P.sum(-1).reshape(n, 1)
A = np.copy(P)
for i in range(n):
A[i] /= P_bar[i]
np.savetxt('data/safegraph/safegraph_liability_matrix.csv', P, delimiter=',')
np.savetxt('data/safegraph/safegraph_external_liabilities.csv', B, delimiter=',')
np.savetxt('data/safegraph/safegraph_external_assets.csv', C, delimiter=',')
np.savetxt('data/safegraph/safegraph_proportional_liability_matrix.csv', A, delimiter=',')
np.savetxt('data/safegraph/safegraph_bailouts.csv', L, delimiter=',')
np.savetxt('data/safegraph/safegraph_minority.csv', p_minority, delimiter=',')
nx.write_gpickle(G, "data/safegraph/graph.gpickle")
def load_safegraph_dataset():
G = nx.DiGraph(nx.read_gpickle('data/safegraph/graph.gpickle'))
n = len(G)
P = np.genfromtxt('data/safegraph/safegraph_liability_matrix.csv', delimiter=',')
B = np.genfromtxt('data/safegraph/safegraph_external_liabilities.csv', delimiter=',', dtype=np.float64).reshape(n, 1)
C = np.genfromtxt('data/safegraph/safegraph_external_assets.csv', delimiter=',', dtype=np.float64).reshape(n, 1)
A = np.genfromtxt('data/safegraph/safegraph_proportional_liability_matrix.csv', delimiter=',', dtype=np.float64)
L = np.genfromtxt('data/safegraph/safegraph_bailouts.csv', delimiter=',', dtype=np.float64).reshape(n, 1)
p_minority = np.genfromtxt('data/safegraph/safegraph_minority.csv', delimiter=',', dtype=np.float64).reshape(n, 1)
P_bar = B + P.sum(-1).reshape(n, 1)
w = C + P.sum(0).reshape(n, 1) - P_bar
return A, P_bar, P, C, B, L, p_minority, w, G
def minority_helper(x, p_minority):
if x['race'] == 'White':
return 0
elif x['race'] != 'White' and x['race'] != 'Unanswered':
return 1
else:
return p_minority
if __name__ == '__main__':
args = get_argparser()
# Read geographic data relating (lat, lon) to cbg
geographic_data = pd.read_csv(os.path.join(args.census_data, 'metadata/cbg_geographic_data.csv'))
X = np.vstack([geographic_data['latitude'].to_numpy(), geographic_data['longitude'].to_numpy()]).T
knn = NearestNeighbors(n_neighbors=args.n_neighbors, metric='haversine')
knn.fit(X)
_, indices = knn.kneighbors([[args.lat, args.lon]])
# Pick k-nearest cbgs according to haversine distance from a user-given (lat, lon) pair
neighbor_cbgs = geographic_data.iloc[indices[0].tolist()]
neighbor_cbgs = list(neighbor_cbgs['census_block_group'])
# Load all brands (i.e. shops etc.) and their corresponding safegraph ids (a brand may contain multiple POIs)
brands = pd.read_csv(os.path.join(args.patterns_data, 'brand_info_backfill/2020/12/13/04/2018/03/brand_info.csv'))
brands.rename(columns={'safegraph_brand_id' : 'safegraph_brand_ids'}, inplace=True)
brands = brands[['safegraph_brand_ids', 'naics_code']]
brands.set_index('safegraph_brand_ids', inplace=True)
# Load payroll data
payroll = pd.read_csv(os.path.join(args.payroll_data, 'employment_clean.csv'))
payroll.rename(columns={'NAICS' : 'naics_code', 'PAYROLL' : 'payroll'}, inplace=True)
# Join payroll data
brands = brands.join(payroll.set_index('naics_code'), on='naics_code', how='left')
brands.fillna(value={'payroll' : brands['payroll'].mean()}, inplace=True)
# Monthly patterns
patterns_helper = []
for i in range(1, 5):
patterns = pd.read_csv(os.path.join(args.patterns_data, 'patterns/2020/12/04/04/patterns-part{}.csv'.format(i)))
patterns.dropna(subset=['safegraph_brand_ids'], inplace=True)
patterns.dropna(subset=['poi_cbg'], inplace=True)
# Get all stores located within the requested cbgs
# This query should yield the businesses of the nearby areas
patterns = patterns[patterns['poi_cbg'].isin(neighbor_cbgs)]
patterns_helper.append(patterns)
patterns = pd.concat(patterns_helper, axis=0, ignore_index=True)
# Get the categories of POIs through the brands dataframe
patterns = patterns.join(brands, on='safegraph_brand_ids')
# Drop unneeded columns
patterns = patterns[['placekey', 'naics_code', 'payroll', 'poi_cbg', 'visitor_home_cbgs', 'bucketed_dwell_times']]
# Estimate the probability of a device belonging to a worker (resp. a non-worker)
patterns['workers'] = patterns['bucketed_dwell_times'].apply(dwell_workers)
# Size of households
households = pd.read_csv(os.path.join(args.census_data, 'data/cbg_b11.csv'))
households_race = households[['census_block_group', 'B11001Ae1', 'B11001Ie1', 'B11001Be1', 'B11001Ce1', 'B11001De1', 'B11001Ee1', 'B11001Fe1']]
households_race.rename(inplace=True, columns={'B11001Ae1': 'white', 'B11001Ie1': 'hispanic/latino', 'B11001Be1' : 'african_american', 'B11001Ce1' : 'native/indian', 'B11001De1' : 'asian', 'B11001Ee1' : 'hawaian', 'B11001Fe1': 'other'})
households_race['minority'] = households_race['hispanic/latino'] + households_race['african_american'] + households_race['native/indian'] + households_race['asian'] + households_race['hawaian'] + households_race['other']
households_race['p_minority'] = households_race['minority'] / (households_race['minority'] + households_race['white'])
households_race.set_index('census_block_group', inplace=True)
households_dependents = households[['census_block_group', 'B11016e2', 'B11016e3', 'B11016e4', 'B11016e5', 'B11016e6', 'B11016e7', 'B11016e8']]
households_dependents.set_index('census_block_group', inplace=True)
# Household income
households_income = pd.read_csv(os.path.join(args.census_data, 'data/cbg_b19.csv'))
households_income = households_income.loc[:,~households_income.columns.str.contains('m', case=False)]
households_income['annual_income'] = households_income.loc[:, 'B19052e2':'B19060e3'].sum(axis=1)
# Employment status
households_employment = pd.read_csv(os.path.join(args.census_data, 'data/cbg_b23.csv'))
households_employment['p_employed'] = households_employment['B23025e2'] / households_employment['B23025e2']
households_employment = households_employment[['census_block_group', 'p_employed']]
households_employment.set_index('census_block_group', inplace=True)
# Business Bailouts
loans = pd.read_csv(os.path.join(args.loans_data, 'loans.csv'))
loans.rename(inplace=True, columns={'placekey_poi_match' : 'placekey'})
loans.set_index('placekey', inplace=True)
n_white = len(loans.query("race == 'White'"))
n_minority = len(loans.query("race != 'White' and race != 'Unanswered'"))
p_minority = n_minority / (n_white + n_minority)
loans = loans[loans.index.isin(patterns['placekey'])]
loans['p_minority'] = loans.apply(lambda x: minority_helper(x, p_minority), axis=1)
# Consumer Expenditures
expenditures = pd.read_csv(os.path.join(args.expenditures_data, 'expenditures.csv'))
# Business Assets
business_assets = pd.read_csv(os.path.join(args.business_assets, 'assets.csv'))
# Business Expenses
business_expenses = pd.read_csv(os.path.join(args.business_expenses, 'expenses_processed.csv'))
# Create multi-graph topology
G = create_multi_graph(patterns, expenditures)
# Create node attributes
loans_amount = loans['amount'] / 12
loans_amount = loans['amount'].to_dict()
for x in G.nodes():
if isinstance(x, str):
if x in loans_amount:
loans_amount[x] = G.out_degree(x) * loans_amount[x]
nx.set_node_attributes(G, loans_amount, 'L')
loans_race = loans['race'].to_dict()
nx.set_node_attributes(G, loans_race, 'race')
households_dependents = households_dependents[households_dependents.index.isin(list(G.nodes()))]
households_dependents_avg = collections.defaultdict(float)
num_households = collections.defaultdict(int)
households_bailouts = collections.defaultdict(float)
households_external_assets = collections.defaultdict(float)
business_external_assets = collections.defaultdict(float)
business_external_liabilities = collections.defaultdict(float)
annual_expenditures = 63000
monthly_expenditures = annual_expenditures / 12
households_external_liabilities = collections.defaultdict(float)
for idx, dist in households_dependents.iterrows():
if np.sum(list(dist)) > 0:
try:
p_employed = households_employment[households_employment['census_block_group'] == idx]['p_employed'].iloc[0]
except:
p_employed = 1
households_dependents_avg[idx] = np.average(np.arange(1, 1 + len(dist)), weights=list(dist))
num_households[idx] = int(np.ceil((G.in_degree(idx) / p_employed + G.out_degree(idx)) / households_dependents_avg[idx]))
else:
households_dependents_avg[idx] = 1
num_households[idx] = int(np.ceil(G.in_degree(idx) + G.out_degree(idx)))
annual_income = households_income[households_income['census_block_group'] == idx]['annual_income'].iloc[0]
monthly_income = annual_income / 12
households_bailouts[idx] = num_households[idx] * stimulus_check(annual_income, households_dependents_avg[idx])
total_weight = 0
for v in G.predecessors(idx):
for key, val in G.get_edge_data(v, idx).items():
total_weight += G[v][idx][key].get('weight', 0)
households_external_assets[idx] = max(0, num_households[idx] * monthly_income - total_weight)
nx.set_node_attributes(G, households_dependents_avg, 'avg_dependents')
nx.set_node_attributes(G, num_households, 'num_people')
nx.set_node_attributes(G, households_race['p_minority'].to_dict(), 'p_minority')
nx.set_node_attributes(G, loans['p_minority'].to_dict(), 'p_minority')
nx.set_node_attributes(G, households_bailouts, 'L')
nx.set_node_attributes(G, households_external_assets, 'assets')
for x in G.nodes():
if isinstance(x, str):
for cbg in G.predecessors(x):
for key, val in G.get_edge_data(cbg, x).items():
G[cbg][x][key]['weight'] = G[cbg][x][key]['weight'] / households_dependents_avg[cbg]
for x, data in G.nodes(data=True):
if isinstance(x, int):
total_weight = 0
for y in G.successors(x):
for key, val in G.get_edge_data(x, y).items():
total_weight += G[x][y][key]['weight']
households_external_liabilities[x] = max(100, num_households[x] * monthly_expenditures - total_weight)
elif isinstance(x, str):
total_weight = 0
for y in G.predecessors(x):
for key, val in G.get_edge_data(y, x).items():
total_weight += G[y][x][key]['weight']
naics_code_prefix = int(str(data['naics_code'])[:2])
assets = business_assets[business_assets['naics_code_prefix'] == naics_code_prefix]
if assets.empty:
assets = business_assets['monthly_revenue'].mean()
else:
assets = assets['monthly_revenue'].iloc[0]
business_external_assets[x] = max(0, assets - total_weight)
total_weight = 0
for y in G.successors(x):
for key, val in G.get_edge_data(x, y).items():
total_weight += G[x][y][key]['weight']
expenses = business_expenses[business_expenses['naics_code'] == data['naics_code']]
if expenses.empty:
expenses = G.out_degree(x) * expenses['monthly_expenses_per_employee'].mean()
else:
expenses = G.out_degree(x) * expenses['monthly_expenses_per_employee'].iloc[0]
business_external_liabilities[x] = max(100, expenses - total_weight)
nx.set_node_attributes(G, households_external_liabilities, 'liabilities')
nx.set_node_attributes(G, business_external_assets, 'assets')
nx.set_node_attributes(G, business_external_liabilities, 'liabilities')
create_eisenberg_noe_data(G)